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COMBUSTION OF HYDROGEN INJECTED INTO A SUPERSONIC AIRSTREAM-
(THE SHIP COMPUTER PROGRAM)
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N.C. MARKATOS, D.B. SPALDING and D.G. TATCHELL

(0) )
CONCENTRATION, HEAT AND MOMENTUM LIMITED
BAKERY HOUSE, 40 HIGH ST., WIMBLEDON, LONDON,SWl9 5AU
ENGLAND

1. INTRODUCTION

1.1

1.3

Background

The SHIP (Supersonic Hydrogen Injection Program) computer
program is concerned with the numerical computation of three-
dimensional flow situations arising when hydrogen is injected
into a supersonic airstream at an angle ranging from normal
to parallel to the airstream main flow direction. The flow
may be free, or confined in a duct whose walls may expand or
contract arbitrarily but smoothly. .

In its present version, SHIP predicts the mass fractions of
the products of combustion . of hydrogen and oxygen based on
the assumption of chemical equilibrium.

‘Connections with Preyious Work

Under a previous Contract (NAS1-13239) a computer program,

HISS, was developed for similar situations to those considered

here. The code has been extended and extensively modified to

become SHIP so that the following facilities, not provided

for in HISS, are included:

(i) Any of the four lateral boundaries can be (1) a wall,
(2) a symmetry plane, (3) a free surface.

(ii) For walls, the distance of each wall from a reference
plane may be specified as an arbitrary, but smooth,

function of distance along the principal flow direction.

(iii) Ability to specify mass flux through the top and
bottom wall 1s provided.

(iv) Choice between specification of an adiabatic wall or
a constant temperature on each wall is provided.

Purpose of the Present Report

The terms of the NASA contract call for the development and
transmission of the SHIP code having the general features
described above.



This report marks the completion of the project. It provides
all the necessary information concerning the mathematical
modelling of the flows under consideration, it describes the
numerical analysis involved in the solution of the relevant
equations and it defines the user-orientated parts of the

code.

It is to serve as both a comprehensive reference to the
mathematics and numerical procedure used in the code and as
an operational manual for the computer program SHIP.

1.4 The Physical Problem Considered

NASA is active in research on supersonic combustion {2-4},

Of particular interest are methods for injecting hydrogen in
a supersonic airstream in a manner which optimizes the design
of supersonic combustors.

Three arrangements of interest are shown in Figures (1), (2)
and (3).

Due to interaction of the mainstream with the jet, the flow
separates ahead of the jet and reattaches behind it. Also a
bow shock is caused by this interaction.

There is an interaction between the jets causing flow in
directions normal to the main-stream direction. This

is the phenomenon which makes three-dimensional calculations
necessary.

Downstream oflthe jet the hydrogen mixes with the air and the
region containing hydrogen widens.

As the flow moves downstream, the mixing, chemical reaction,
acceleration, viscous effects etc. all combine to produce a

pressure variation.

Thus, in addition to the aero- and thermodynamic characteristics
of these flow arrangements, knowledge of the extent of the

region of hydrogen,and its distribution within it, is necessary
to assess the effectiveness and uniformity of air-hydrogen

mixing.

1.5 Capabilitics and Limitations of SHIP

SHIP is a general, flexible computer program capable of
calculating three-dimensional, boundary-layer flows which are
either external or internal. Features built into this

program include:
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e Any of the four bounduaries cau be either a wall, a
symmetry plane, or a free surface.

e For internal flows the distance of the duct walls from a
reference plane may be specified as a function of distance
along the principal flow direction.

e Walls can bhe specified as being either adiabatic or at
constant temperature.

e Injection of hydrogen at angles ranging from normal to
parallel to the main air-stream can be handled.

e Injection through arrays of holes in either or both the
top and bottom walls is provided for,

e Free-boundary conditions resulting from a small-disturbance
theory and isentropic considerations are applied to
supersonic free boundaries. .

Thermodynamic equilibrium is supposed to prevail between the
species H,, O,, H,0, O, H and OH; and four equilibrium
reactions are“allowed for.

The upper surface of the domain of integration is taken above
the bow shock so that the edge conditions may be the same
as the free-stream conditions.

The lateral and longitudinal pressure gradients are uncoupled
in the subsonic-flow in order that the equations remain
parabolic, and forward-marching integration can be used;
thus, the calculation "jumps'" the separated region at the

Jjet exit.

The practice used for this jump is as follows:

1. An_arb%trary long forward step is taken over the
qet exit [e.g., 10 jet diameters]. This effectively
jumps the ellipticregion near the jet exit.

2. The source and sink terms for all of the dependent
variables are modified at the cell immediately
over the jet exit, so as to account for the
required inflow rate at the jet boundary of the
variable in question. The overall conservation
of mass, momentum, and energy, is thus satisfied
for the region over the jet.

The flow is considered to be turbulent and the effective

viscosity is calculated by way of the "k-e" two equation

turbulence model described in {5}. Density is calculated
via the ideal-gas law.

The program predicts the distributions of the following
variables:

(i) the three velocity components;

(ii) static pressure;

(iii) total enthalpy; _

(iv) mass fraction of each species present in the field, _
i.e. Hz, H, 02, 0, Hzo, OH’NZ’



(v) ‘turbulence energy and dissipation rate of turbulence
energy. S

The pfogram also predicts the distributions of auxiliary
guantities; namely, temperature and density distributions,
and drag and hoat transfer at the walls.

The program is written in standard FORTRAN IV language and,
although it has been developed on a CDC machine, it

will require only minor modifications to run on other
machines with FORTRAN IV compilers.

Outline of this Report .

The remainder of this report is divided into the following
eleven Chapters:

Chapter 2 is concerned with the mathematical formulation and
physical models employed in SHIP.

Chapter 3 then describes the finite-difference equations and
outlines the numerical solution algorithm for solving the
relevant equations.

Chapters 4 to 8 are devoted to program topics and are intended
primarily as the operational manual for the program.

Emphasis is therefore placed on the deséription of the program
structure, the function of the subroutines and on the input/

output features. These sections provide all necessary
instructions to permit formulation of problems which fall
within the scope of SHIP. It also provides information to

aid interpretation of the predictions obtained from the
program.

In Chapter 9, sample predictions for some test cases specified
by NASA Langley are discussed. Suggestions for further
extensions and refinements of SHIP are included in Chapter 10.

Relevant literature references (Chapter 11 ) and nomenclature
(Chapter 12) close this report.

Appendix A describes in detail the equilibrium chemistry
model used in conjunction with the computer program to predict
the properties in a hydrogen-oxygen flame.

Appendix B describes the Free Stream Boundary Conditions in
supersonic flows.

Finally, Appendix C gives a list of FORTRAN variables used in
SHIP and a listing of the SHIP program is provided in Appendix
D.

The present report supersedes a previous CHAM report
published as NASA CR~-2655, March 1976 {6}.



THE MATHEMATICAL AND PHYSICAL ANALYSIS

Introduction

This chapter details the mathematical and physical basis of
the SHIP code. Section 2.2 is concerned with the system of
coordinates chosen for use in the present work. Section 2.3
is concerned with giving. the differential equations for
conservation of momentum, stagnation enthalpy and chemical

species. .
Section 2.4 describes the turbulence model. Finally, Section

2.5 provides the auxiliary information necessary to close the
problem.

The Coordinate System

The system of coordinates chosen for use in the present work,
is quasi-orthogonal. The reason for this choice is that the
representation of flows within domains whose cross-sections
vary with axial position cannot conveniently be achieved
through equations expressed in orthogonal coordinate systems.
It is stipulated that whereas two of the coordinate axes

(x,y) maintain mutual orthogonality throughout the flow-
field, the third (z) is permitted to depart from orthogonality
with respect to the other two, within specified limits. It is
demonstrated below that these limits are consistent with the
boundary-layer approximations {7}.

The elements of the curvilinear system (E,n,t) are defined
in terms of orthogonal, Cartesian coordinates (x,y,z) as

follows:

* - Ny
R

n = — (b) (2.2-1)
Yn ™ Vs
and ‘ ' T = z (c)
Furthermore we define: .
Mgy = X, (a)
AE. = x = x (b)
E w (2.2-2)
Ang =y (c)
bng =y -y, (d)



The above definitions can best be appreciated with reference
to Figure (4). The subscripts N, S, E and W, refer
respectively to the North, South, East and West boundaries of
the calculation domain in the x-y plane.

The coordinates n and & are mutually orthogonal for all values
of . Furthermore, planes of constant g are approximated as
pPlanes of constant =z.

CALCULATION DOMAIN

X

FIGURE 4: ILLUSTRATION OF THE QUASI-ORTHOGONAL COORDINATE SYSTEM; THE
CIRCLED CHARACTERS REPRESENT THE NORTH, SOUTH, EAST AND WEST
BOUNDARIES OF THE CALCULATION LOMAIN




The above definitions for n,£ make possible the use of
coordinates that vary between 0 and 1 only.

The components of velocity u, v and w are now defined as
follows: u and v are normal to the y-z and z-x planes
respectively, i.e. are aligned with the § and n coordinate
directions. w is normal to constant ¢ planes, but is
permitted to depart from alignment with T by small angles;
the limits of this inclination are prescribed below. The
following mathematical consequences result from the above

definitions.

The coordinates (§&,n,%) satisfy the general relationships:

P o 9 98 3 9n , 9 3¢
ox 9f 93X on 9x oL 9Xx
2 .3 3,3 3, 3 3 _
5y - 3E 3y T 3n 3y ' 3z 3y (2.2-3)
D - 9 28 . 3 9n, 3 3L
9z 0t 02 on 02 9C 90z
which on application of the definitions of (2.2-1) and
(2.2-2) reduce to:
8 -1 2
ax AEE F13
) 1 3
_—= e = 2.2-4
oy AnN on ( )
2o 1o 2y, 20, a
9z AgE 92z 9% 9L
N Sl IO AP N
Bnyg P N 75z an ~ g

It can be deduced that, on applying the definitions (2.2-1)
to relationships (2.2-3), the effect of non-orthogonality of



the ¢ coordinate with respect to & and n is negligible only
if the following conditions are satisfied:

[+ 7]
Ll
o
[y

(a)

@
N

(2.2-5)

on . 3¢
Z ¢ 32 << 1 (b)

Conditions (b) are similar to the well-known boundary-layer
assumptions; thus the definitions (2.2-1) along with
conditions (2.2-5) permit the transport equations to be
expressed in quasi-orthogonal coordinates, whilst retaining
their boundary-layer character.

The conditions (2.2-5(b)) are related to the area-ratio
variation along the axis. It is obvious that this variation
must be small to maintain the desired unstalled flow regime.
Since stall, or axial flow recirculation,violates the
conditions required for boundary-layer flows (i.e. flows
within the range of validity of SHIP), the above conditions
are consistent with the physical nature of the flows under
consideration.

The mean-flow Conservation Eguations

The differential equations listed in this section are the ones
which express the conservation of momentum, mass, energy and
chemical species in a three-dimensional flow with axial
variations in cross-section.

The form of these equations is restricted to flows which are
classified as parabolic/hyperbolic. The term 'parabolic
flows" implies that:

(a) there exists a predominant direction of flow (i.e.
- there is no reverse flow in that direction);

(b) the diffusion of momentum, heat, mass etc. is negligible
in that direction, and

(¢c) the downstream pressure field has little influence on
the upstream flow conditions.

When these conditions are satisfied, the coordinate in the
main~-flow direction becomes a '"one-way'" coordinate: 1i.e. the
upstream conditions can determine the downstream flow
properties, but not vice versa. It is this convenient

11
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behaviour of the parabolic flows that allows the use of a
marching integration from an upstream station to a downstream
one, for the solution of the following equations.

a. Continuity

1 3 d d '
E};— E {(.pu - ow {52 (AEW)' * 9z (AEE)})}*'
1 3 d d
ﬁ; 3 {(DV - DW{EE (Ans) +T]'a‘E (AHN)})}"'
N S YV w) = 0 (2.3-1)
BEghny Bz (PSpfTN P )

b. Transport of fluid property ¢

lp

a_ag {(ou - ow{a%.(AE;w) +£adg (_AEE)})¢} +

&
™
=

-

2
an

>
3
Z

{(ov'— pw{agz— ('Ans) +n-adz (AnN)})d)} +

1 ) _ 9
BE Ay 35 (ARphny PWe) = 8 (AEE)E 3€

2oL, 1 3 { 3_41}
r 99 + T (2.3-2)
'{ L R L

In the above equation, ¢ is taken to represent any fluid
property transported by the flow, including the three components
of momenta per unit mass, u, v and w. The quantities within
square brackets are consequences of the curvilinear nature

of the geometry confining the flow. The terms S8, and T
represent. respectively the source (and/or sink) and the¢
diffusion coefficient for the transport of ¢.



The nature of the dependent variables and the associated forms
of S and Ty are given in Table (1); and other symbols are
deflned in gection (12). The Table shows that the particular
versions of (2.3-2) of interest here are: the momentum
equations for each coordinate direction; the energy equation;
an equation expressing conservation of total hydrogen; and

the differential equations for turbulence properties. These
equations together with the continuity equation (2.3-1)

permit calculation of eight dependent variables, namely,
u,v,w,p,f,h,k and €.

The omissions from the equations are the shear stresses and
diffusion fluxes acting in the z-direction. These omissions
accord with the definition of parabolic flows and with the
consequent necessity to ensure that no influence from downstream
can penetrate upstream.

A further point to note is that in subsonic flows the symbol p
used for the pressure in the z-momentum equation is different
from the symbol p in the two other momentum equations. This

is a reminder of the fact that in the calculation procedure

an inconsistency is deliberately introduced into the treatment
of pressure, and that the quantities p and p are calculated
differently. The pressure p can be thought of as a form of
space-averaged pressure over a cross-section, and the gradient
dp/3z is supposed to be known (or calculated) before
calculation of the lateral gradients 3p/3n, 9p/3E. This
practice is implicit in two-dimensional boundary-layer theories
also. It is the final step to be made in preventing downstream
influences from propagating upstream. If this step is omitted
the solution is often wholly unrealistic physically. This
inconsistency in the treatment of pressure, it may be said,

is one part of the price to pay for making the equations
parabolic; the gain is the freedom to employ marching
integration and to use two-dimensional computer storage, even
though the flow is three-dimensional and the full equations are
elliptic. There is however no penalty for wholly supersonic
flows, for which the three momentum equations can share the
same pressure, without impairing the marching-integration
feature.

The Turbulence Model

The effective turbulent-transport coefficients ugsrs, 'y, T
Th and 'y are determined by means of a two-equation (k-c)
model of turbulence {5}. According to this model, the
magnitude of the viscosity depends only on the local values
of the turbulence kinetic energy, k, on the dissipation rate
of turbulence energy, £, and on the fluid density p.

e’

The form of the two transport equations for k and € is identical
to (2.3-2); the transport coefficients and source terms are
provided in Table (1)

13
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TABLE (1)

The appropriate transport coefficients and source

terms for the variable ¢

é Ty S,
u u 1 3 [w .. 8u] __1 3p 13 2]
il B v ag[ eff ag] L€g 9¢ T BEbny an[“eff 3t
v n 1 3| av| 1 3p 1 3 3v
eff (8ng)2 Sn[ eff n] Bny 20 * BELAny aip%ffan}
w Mefs ’3%
k Vi
1 du,2 . . 1 Iv.2, +
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Table (2),below, provides values for the laminar Prandtl,
number, o, and for the turbulent Prandtl number o ..
Also given in Table (3) are values for the constants
associated with the turbulence model: Cy and Cy which are
required in the source term of the k and e equations;

C
which is used to obtain the turbulent viscosity as will ge

described in Section (2.6) below, and K and E which are
constants required in the law-of-the-wall formulation
described in Section (3.4-4) below.

TABLE (2)

Values of the laminar and turbulent Prandtl numbers

¢ T @ o
k 1.0 .7
> 1.3 .7
h .9 .7
f .9 .7
TABLE (3)
Values of the constants in the turbulence model
formulation
K E S Cy Cy
.42 9.0 .09 1.44 1.92

Previous experience of applying the above equations to a
large number of flow situations, has revealed that these
constants tend to be nearly universal constants. However,
a "fine~tuning" of their values for each particular flow
situation may be necessary to optimise the results.

15
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"Auxiliary Information

In addition to the partial differential equationé, the
complete specification of the mathematical problem requires
provision of auxiliary information of four types:

e Inlet conditions, i.e. initial values of dependent
variables corresponding to the position of the coordinate
along the predominant flow direction, %, at which solutions-
to the set of equations are initiated;

® Boundary conditions, i.e. conditions of all the dependent
variables at the E, W, N and S boundaries, as a function

of ¢,

® Physical hypotheses which permit the calculation of
diffusion coefficients as well as sources and sinks of
each variable, in terms of the dependent variables of
these equations, over the entire flow field; and

e Certain relationships among the thermodynamic and
transport properties.

Inlet conditions

Information to start the marching integration is needed.
This information must be provided as the inlet conditions of
all dependent variables, fluid properties and the other
auxiliary variables, at the plane at which solution is
initiated. For the flows under consideration, this means
specifying the velocities, pressures, enthalpies, species
mass fractions, turbulence quantities and the physical
properties, density, viscosity and specific heat.

Any type of uniform or non-uniform distributions at inlet
may be specified and supplied to the calculation procedure
in a simple manner. For example, a distribution of
experimentally-determined velocities may be supplied as a
function of grid position. So also may the static-pressure
and temperature distributions.

Boundary conditions

Boundary conditions along the N, S, E and W surfaces

(see Figure 4) must be specified for each variable. Any one
of the above boundaries may be either (1) a symmetry plane,
(2) a wall or (3) a free surface; and, as a conseguence,
different boundary conditions may apply on the different
faces of the domain. These boundary conditions can be
specified as the value of the variable ¢ or the flux of ¢
through the surface. A detailed discussion of boundary
conditions is given in Section 3.4.3.




2,5-3 Physical hypotheses

The gas density is calculated by the ideal-gas law,
namely: '

= p¥W ; _
p = &5 : (2.5-1)

where the mixture molecular weight W is calculated from:

= 3 (2.5-2)
J

.
>

=B

1
W

where the summation is taken over all the chemical species
J in the flow field. Details on the calculation and use
of density in compressible-flow situations are given in
Section 3.5.

The laminar viscosity is taken into account only in the
vicinity of walls, through the "wall functions" {6} to be
described in Section 3:4-3. 1Its value is constant. '

There is no need for its inclusion in the core of such
highly turbulent flows as the ones under study.

The turbulent viscosity is determined by means of the

k- model of turbulence employed. According to this model,
the magnitude of the viscosity depends only on the local
values of the turbulence kinetic energy k, on the
dissipation rate of turbulence energy, €, and on the fluid
density, p. The turbulent viscosity is then given by:

= 2 -
My = CDpk /€ ; (2.5-3)

where CD is a constant, given in Table 3.

The length scale in this model is obtained from:

3/2

2 =C » (2.5-4)

o=

D

and may be used for printing purposes, since its physical
interpretation is more readily understandable than that

of €.
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2.5-4 Thermodynamic and transport relationships

In order to calculate the fluid temperature and density, it
is necessary to know the mass fraction of each chemical
species at a given location.

Thermodynamic equilibrium is assumed so that the species
mass-fraction distribution is calculated from the local
temperature, pressure, and element fractions. Details of
this technique are given in Appendix A,

Another important relationship is between the stagnation
enthalpy and the temperature. This relationship is:

= o u2+v2+w2
h = g mjhj + — + Cp (T - Tref) + k (2.5-3)

where C, is the mixture specific heat and Tyo¢ is the
referernce temperature for which the species enthalpy of
formation, is defined. Strictly speaking the right hand
side of equa%lon (2.5-3) should include the local kinetic
energy of turbulence as an additional term. This term has
been neglected here because it is many orders of magnitude
lower than the other three terms for the flows considered.
For the present work, T of is taken as 09K so that Cp is

defined by:
T . h-h
- 1 f
p T_Tref T p T-Trer (2. )-

ref

where h is the specific enthalpy at temperature T.
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THE NUMERICAL- ANALYSIS

Introduction

In this chapter, details are provided of a numerical scheme
reported by Patankar and Spalding {7} for the solution of the
mathematical problem described in Chapter 2. The layout of
the rest of this chapter is as follows: Section 2 describes
the procedures adopted in the discretization of equations
(2.3~1) and (2.3-2). The computational structure of the
numerical scheme employed is outlined in Section 3. In
Section 4, the manner of incorporation of auxiliary
information into the computational procedure, is briefly
outlined. The treatment of compressibility is reported in
Section 5 which closes the chapter.

The Discretization Procedure

The finite-difference equivalents of the differential
equations are obtained by integrating the latter over the
control volumes which surround the nodes of a grid system.
This procedure is described in the following sections.

The Grid system

The finite-difference grid used consists of:

(a) In the n-& planes, a system of intersecting,
orthogonal grid lines of constant n and §. No
restrictions are placed upon the spacing between the
lines in any given direction.

(b) Planes of constant ¢ at which solutions are obtained
are arrived at by taking succesive increments (i.e.
forward steps) along the ¢ direction (main flow
direction). :

The limits on the size of the forward step, Ac;are
governed by considerations of stability and accuracy
of the numerical procedure.

Storage locations

The intersections of the grid lines mentioned above are
termed grid nodes. All the fluid properties with the
exception of the velocity components u and v, are stored at
the grid nodes. The velocity v is located midway between
grid nodes in the n-direction, and velocity u similarly
located along the £ direction. Figure (5) illustrates this
"staggered" grid system in the n-£ plane. The boomerang-
shaped envelopes shown on the figure enclose the triads of
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points denoted by the single letter, N,S,E,W or P,
which represent a unique computer storage 1ocat10n.

In the algebra connected with the discretization procedure,
when a variable is required at points other than those at
which it is located, averages of neighbouring values are
used to arrive at the value of the variable at that point.

" Control volumes

The control volume surrounding each grid node P, indicated
in Figure {6} has two faces that coincide with two constant-
r planes. One of these, at which integrations of the
partial differential equations are to be performed, is
designated the downstream (D) station. The other faces are
midway between the nodes, so that the velocity components
giving rise to convective fluxes along the n and £
directions are located on the faces themselves.

Figure {7}, illustrates this point, with reference to a
cross~section of the control volume in the £-n plane. It

is over such control volumes, that balances of w, ¢ and

mass are made in the calculation procedure. Similar
control-volumes,resulting from the "staggering' of locations
on the grid, are defined to surround the locations of the

v and u velocity components. Three sets of control volumes
are thus identifiable over the entire calculation domain.

A slight modification to the variable location and

control ~volume definitions is made in the region of
boundaries of the calculation domain. The control

volumes corresponding to the near-boundary velocities v in
the case of N and S,and u in the case of E and W boundaries
are arranged to extend right up to the boundary. Figure (8)
illustrates this point.

* Note on change in notation., N,S,E,W were used in
Chapter 2 to denote domain boundaries. From here on they
- will denote neighbouring grid nodes.
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FIGURE 7:

CONTROL VOLUME WHEN THE GRID EXPANDS TO
ACCOMMODATE EXACTLY THE DIFFUSER SHAPE.
NOTE THE INCLINATION OF THE w-VELOCITY
ARROW WITH GRID LINES
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3.2-4 The Discretized equation

The general discretized equation is obtained by
integrating equation (2.3-2), for each variable, over
the appropriate control volume. In the integration,
the following assumptions are made about the manner in
which the variables vary between grid nodes.

(a)

(b)

(e)

(d)

+

+

+

In the z-direction, ¢ varies in a stepwise manner;

i.e., the downstream values of ¢ are supposed to prevail
over the interval from the upstream station to the
downstream one except at the upstream station itself.
This makes the present finite-difference scheme a
fully-implicit one.

For the calculation of the z-direction convection, and
of source terms that may depend on ¢, the variation

of ¢ in the xy-plane is also taken to be stepwise.
Thus, in the xy-plane the value of ¢ is assumed to
remain uniform and equal to ¢p over the.control volume
surrounding the point P and to change sharply to
¢N’¢S' ¢E’ or ¢w outside this control volume.

For the cross-stream convection from the yz and xz
faces of the control volume, the value of ¢ convected
is taken to be the arithmetic mean of the ¢ wvalues

on either side of that face, except when this practice
is altered bv the "high-lateral-flux" modification
mentioned below.

For diffusion across the yz and xz faces of the control
volume, we assume that ¢ varies linearly between grid
points, except when the high-~lateral-flux modification
dictates otherwise.

The result of these operations is an algebraic equation
for each grid location, representing the discretized
form of the balance of the variable, over the control
volume corresponding to that location. For a general
dependent variable ¢, .this equation takes the form:

[ g n _ n,.
L7p¢p =~ Lp u %p,v faln (O * ¢p) = £ L (0p + dg)-

2 £ o]
fe Le (¢E + ¢P) - fw Lw (¢P * ¢W) = Sp

™ (4 - ¢p) = T (dp = 6g)

Tg (¢ = 9p) - T& (op = oy) (3.2-1)
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The factors f _, fW’ f. , and f_ are interpolation factors
to account foF the staggered cells. For the ¢ cells,
they are all 0.5.

Attention is drawn here to the manner of discretization of
the convective terms in the n- and & directions. The

- method used is designated the "high-lateral-flux

modification' and is discussed in detail ih {8}. It
is briefly described later.

The coefficients of equations (3.2-1) are now defined as
follows:

ng,u = ("“’)p,U- AERATLAERATY (2)

L; f [pv -pwf{%z (Ans) + n%; (AnN){L AEPACAEE (b)

té = ou - ow & (a£y + £L (ag 3] Anoacan. (o)

i P W 13z W dz E’ | %P N

z = T n n
A R . (@

£ . AnpAzZAny (e)

T; =Ty, (3.2-2)

'1osgaEg ’

= L AE_ATAEL (£)

j a ‘1’:3 SnsA

J %y

¢ -

Sp = S¢’PAEPAHPACA€EAHN (g)
where,

A's and §'s represent the widths of control-volume faces

and internodal distances respectively (see Figure 9).,
and i and j stand for locations (e,w) and (n,s) respectively.
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Aty is the forward step size, and S.? is the integrated
form of the source (and/or sink) o? ¢, always expressed
for reasons of numerical stability in a linearised form
as:

¢ -
SP S., + S, & (3.2-3)

U P P
Where S.;, and S, are calculated from values already in
computefF store at that time. Expressing source terms in
linearised form enhances the stability of the finite-
difference equations, and is recommended as a useful
practice to be applied wherever possible. Further
it is alsc ‘necessary that S, be negative always if
stability is to be ensured.

On re-arranging the terms of equation‘(3.2—1), one
obtains:

Z A" = < L A .
i % i %1e Sg < (3.2-4)
i =N,S,E,W,U i =N,S,E,W
where the coefficients A{ are defined as follows:-
- £ 1.8
Ag = Tg -3 Lg (a)
- £ 1 .&
AW - Tw t 3 Lw (b)
1 & n o_ :_1-_ n
AN B Tn 2 Ln (e)
AL = Th+ lpn (d) (3.2-5)
S s 2 s *
AL = LS
U L v (e)
o - . 4 :
Sp (S5 * Spop) + Lp yopy (D)

where the L's represent convective contributions, T's
the diffusive and S the source (and/or sink) contributions
to the balance of ¢.

The subscripts are associated with points on the grid
svstem and superscripts to the co-ordinate directions
for which the coefficient is appropriate. The location
of points e,w,n,s, E,W,N,S is given in Figure (9).



Note that in the derivation of Af, account has been taken of
the fact that the faces of the midin control volumes pass
midway between grid nodes so that the interpolation factors
for the calculation of variables on these faces are equal to
0.5, This is not true for the control volumes appropriate to
u— and v- velocity components in the general case of non-
uniform spacing between grid nodes., Direct interpolation

is then necessary so that the value of u at point P is given
by:

fe Ug + fw uP

and similariy for V. Note also that: f =1 - fe

It is possible for the convective contribution L; of the
coefficient A' to become large on occasion, resulting in

the coefficient becoming negative and causing physically
implausible results when equation (3.2-4) is solved with
such coefficients. The high-lateral-flux-modification,
mentioned above, is introduced to overcome this possibility.
This scheme consists of replacing all the coefficients of
the form T;by T; as follows:

i 01 i 1.1 i 1.4
e 1 [TJ. PSRN —|§Lj!|] (3.2-6)

where |[A|signifies the modulus of A.

Equations for velocity components

The finite-difference equations for the velocity components
are described by the same form as (3.2-4) but contain an
additional source term representing the pressure-gradient.
Since we shall be using the velocity equations later in
deriving the continuity balance, it is necessary to note
here their form.

Z-direction momentum equation
- w W, WD _
wp = ZAi“i.+ SP + DP YA (3.2-7)
i=E,W,N,S

n-direction momentum cquation

: v
Yb = Zszi + S; + Dp (Pp ~ Pg) (3.2-8)
i=E,W,N,S
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f-direction momentum equation

- u u u (Pp = Py) (3.2-9)
up ZAiui + SP + DP p W
i=E,W,N,S
where,
A? denotes again coefficients of the form:
L4
A% = Ay
i —_— (3.2-10)
'd
TA,
i
i=E,W,N,S,U
where ¢ now stands for u, v and w*
w — —
DP AcAnPAEPAnNAEE , (a)
v = -—
Dp = -BzhAipaty » (b) (3.2+11)
u
Dp = -ALANpAng , (e)
and,
S¢ represents the source (and/or sink) of each

velocity excluding the pressure-gradient terms.

.The pressure term employed in the w-equation depends on

whether the local flow is subsonic or supersonic. When
the flow is subsonic, it is necessary, {7}, in order to
render the equations parabolic, to write the source term
as a mean pressure gradient, i.e.,

_ 8 _ . P-D
Sy = 3% < _—E_JL | (3.2-12)
z

N _
Note that these Ai's now relate to the staggered control
volumes described earlier. ' .



where p denotes the mean pressure which is determined for
a confined flow from'the;requirements of overall continuity;
for an unconfined flow, p is simpnly the free-stream pressure,
For a supersonic flow in contrast, it is possible, without
destroying the parabolic nature of the equations, to employ’
the local pressure to calculate the pressure gradient, i.e.,

Pp - P
s = 3 - P "PU (3.2-13)
w oz 8z

This practice, it should be observed, allows full account
to be taken of pressure waves in supersonic flow.

" The continuity eduation

The derivation of the finite-difference form of the
continuity equation is quite simple. It merely states

the requirement that the inflows and outflows of mass

are locally in balance at all the grid nodes in the flow
domain. In the present solution procedure, the requirement
of mass continuity is satisfied by correcting the pressure
field via a pressure-correction equation. The details of the
latter will be given in Section 3.3 below; here we state
merely the requirement of continuity as follows:

continuity

£

(o

- gt reh n -
Gw} AnPAg Anyg ¥ {Gn - GS} AELAL A;E

: | z
{65 yip, yBp, vA0x, vh8E, u = OpAnplépinytip! (3.2-14)

where,

G] represents the mass velocity along direction j atlocation
i. For example:

. 38ng d
Gl = (pv)g = |ow {—5= + g (AnN)}]S (3.2-15)

AnP,U and AEP,U represent the upstream values of AnP and
AEP respectively.
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It should be noted here that two distinct densities are
computed and used at each step. The downstream density
(p,) is used only to compute  the mass flux in the ¢
direction at the downstream face of the cell (thus it
appears only in the last term of equation (3.2-14);

the upstream density (pp ) is used for calculating lateral
mass fluxes, and the upstream axial mass flux. The two
densities are calculated as follows:

pp¥W
- PP,y -
Pp RTp y (3.2-16)

Pp y¥p vy -
by = (3.2-17)
' P, U

where W, is the local mixture molecular weight, R is the
universal gas constant, and subscript 'UU' refers to the
plane two steps upstream of the plane in question.

The Solution Procedure

The computational algorithm

The above set of finite-difference equations has to be solved
for all the variables simultaneously, at the downstream
station. After completion of the solution at the downstream
station, a forward step in the t-direction is taken

and the procedure repeated.

The numerical algorithm embodied in SHIP is the SIMPLE

(for Semi-Implicit Method for Pressure-Linked Equations)
scheme reported earlier in {7} by Patankar and Spalding. _
Central to this scheme is the idea of seeking a non-iterative
marching-integration procedure that takes full advantage of
the boundary-layer character of the flow field,

At each axial location the variables are computed solely

from values at the upstream location; no reference is made

to downstream properties. TFurther, the coefficients (A's)
used in the equations are evaluated {from the values currently
in store; for the velocities,this means use of the upstream
values. The sequence of calculation steps to evaluate the
flow properties at any axial station is as follows:



1)

2)

3)

First the pressure field p and the mean pressure '5
at the axial station considered are assigned 'guessed'
values. The general practice is to employ the
calculated upstream pressures as the guessed values
and to estimate p using the upstream pressure gradient
dp/dz.

The three momentum-equations are solved'to get a first
aporoximation to the velocity field at the longitudinal
station.

The resulting "starred" velocity field is used in
conjunction with the discretized continuity equation
to arrive at a distribution of "pressure-corrections"

pv
(a)

(b)

as follows.*

First the pressure and velocity fields are
expressed as:

p = p* + p'

u = u¥* + u' (3.3-1)

vV = V¥ + v!
where the primed quantities represent the
corrections to the approximate *starred* values.

The latter will not, in general, satisfy the
continuity equation, but will give rise to a net

mass source at P.

It is now required to obtain the corrections to

the velocities and pressures so as to reduce this
mass source to zero. To this end, the substitution
of equation (3.3+-1) into the momentum equations
results in the following expressions:

' = u. u
Up LAju; + Dp (pp - py)

' _ Z v i + v , , (3-3"2)
vVp = ZIAjv; *+ Dp (pp - pQ)

whgre the summation ¥ is carried out over the grid nodes
neighbouring the corresponding velocity.

*Readers not interested immediately in the details of the
pressure-correction .equation may skip to step 4, but should
note that the pressure-correction equation has the same
general structure as that of (3.2-4), and that it is solved
in the same manner as the others.
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(c)

The relations expressed above are substituted

in the finite-difference form of the continuity,
equation (3.2-14); and the coefficients for pé
are collected and rearranged. The pressure
correction equation has then the following form:

- p' ., p'
Pp LA; Py * Sp (3.3-3)
i=E,W,N,S

where pé, p@, p& and p' are corrections to the
the

pressures a nodes E,W,N and S, the A.'s
involve p's, D's and other geometric quan%ities
appearing in equation (3.2-14), and the mass
source,; (or mass imbalance) has been incorporated

into Sg.

For compressible flow, account must be taken of thi
effect of a pressure change at P on the mass flux
at the downstream face of the cell. Thus for
supersonic flow the mass-flux change'(ow)'p is
related to the pressure coOrrection Pp by:

t = * w (_1_‘2 * ! -
where, p; and w; are computed from the guessed
pressure p;; (dp/dp)P is, from equation (3.2-16)

Yo U

(@B, = wr (3.3-5)
P,U
W'
W P -
and DP = 5; (3.3-6)

and is deduced from the finite-difference form of
the momentum equations.

For subsonic flow, equation (3.3-4) must be modified

to account for the fact that Wp no longer depends
on pp; the modified expression is:

(pw)p = (G5)p ¥p Pp (3.3-7)



(d) Equation (3.,3-3), with the coefficients modified
t? account for the above-described influences of
p on (pw),, is solved in the same manner as the
P P’ .
momentum equations. The resulting pressure-
corrections are then used in correcting the
pressure and velocity fields simultaneously.

4) The equations for the remaining variables (i.e. enthalpy,
turbulent energy and its dissipation rate, and mass
fraction of hydrogen in any form) are then solved, by
using the corrected velocity fields.

Steps 1 - 4 complete the operations at a given downstream
station. A new step is then taken and the process
repeated, until the region of interest is covered.

3.3-2 The solution of the equations

The linear algebraic equations are solved by performing
repetitive sweevs of the tri-diagonal matrix algorithm
(TDMA) along the two cross-stream directions n and

£¢. The equations are solved along lines of constant n and
of constant £, and in doing so, the variables located at
adjacent lines are kept constant. Thus for the n-direction
sweep we have:

op = A&¢N + Aé¢s + (Agbg + A&¢w + sg) (3.3-8)

where the terms enclosed in the parentheses are assumed to
be fixed. Similarly, for the E-sweep we have:

_ 1 i U ¢)
¢P = AE¢E + Aw¢w + (AN¢N + AS¢S + SP) (3.3-9)

where now the values of ¢,, and ¢, are kept fixed. The

terms contained in S however, aPe always, like the A coef-
ficients, evaluated fTrom variables in store before the TDMA sweept

The number of TDMA sweeps required to obtain an accurate
-solution to the equations depends on the equation being
solved. It has been found from'experience that for the
pressure-correction equation it is necessary to perform

more sweeps than for the rest. The reason for this

increase is as follows. The equation for a general variable
¢ is dominated strongly by the contribution from upstream
(i.e. the term LpC y ¢ py in equation (3.2-5 (£)). Therefore
the coefficientsAf,A; " etc. are relatively small, and use
of somewhat approximate values for ¢, ¢S etc. does not
result in significant errors. For the pressure-correction
equation however, there is no contribution from upstream,
and the pressure correction at P is related strongly to

35



3.4
3.4~-1

36

the N,S,E and W values. It is therefore necessary to
perform several sweeps to obtain accurate values,

Boundary Conditions

The solution domain

SHIP is set up to make calculations in a rectangular-sectioned
domain of any aspect ratio. The boundaries of this domain may -
be either solid walls, symmetry planes or free boundaries;

and indeed any combination of the above boundaries can be
handled. Furthermore, for walls, the distance of each wall
from a reference plane can be specified as an arbitrary,

but smooth, function of distance along the principal flow
direction,

In the region of free-boundaries the flow is unconfined and
expands as it proceeds downstream. Two considerations must,
therefore, be taken into account here, namely the prescription
of the rate of expansion of the solution domain and the
specification of the mass velocities at the outer free-
boundary. The latter will be described in Section 3.4-3 below.

For the former, a slope of the boundary is prescribed; and if
this leads to solution showing excessive velocity and
temperature gradients the calculation is repeated by moving
the free-boundaries outwards or changing the slope of the
free surface in the desired direction to diminish gradients.

General policy of treating boundaries

The SHIP program requires the specification of boundary
conditions on the N, S, E and W boundaries to £ - n planes
of the calculation domain.

A clear distinction is made, for all dependent variables,
between boundary values and values internal to the domain.
The main machinery of the program leaves the boundary

values unchanged, although it uses them in determining the
internal values. Thus, the procedure is so structured that
it nominally solves the fixed-boundary-value problem. When
boundary values are not known however, appropriate modi-
fications are devised which permit the single structure to
be used. The following sections describe such modifications.

In general, boundary-condition information can be supplied

to the numerical calculation procedure in one of four ways.
The boundary values of the dependent variables themselves

can be modified; or the values of T at the boundary nodes

can be suitably adjusted. Alternatively, the source terms

for the near-boundary control volumes or the finite-difference
coefficients themselves can be suitably modified. SHIP is



equipped with source-term modification practices.

3.4-3 Treatment of the tyﬁéé of bdundaries~hand1ed by SHIP

SHIP allows for any of the four boundaries to be (1) a
symmetry plane (2) a wall, or (3) a free surface.

(1) Treatment of symmetry planes

At symmetry planes and at the axis of symmetry, the
velocities normal to the boundary are zero; and there
are no fluxes across them of other flow variables. In
the present solution scheme such boundary conditions
are incorporated as follows. The normal velocities

at these boundaries are prescribed to be zero a priori
and not altered; for other variables, because both the

" convective and diffusive fluxes are zero, the

appropriate finite-difference coefficients connecting
the boundary node to the near-boundary one are set to
zero, thus breaking their links.

(2) Treatment of wall boundaries

a) At solid walls, all the three components of velocity
are zero and are prescribed a priori. For turbulent
kinetic-energy, k, and its dissipation rate, e, the
boundary-conditions are prescribed through wall
functions described below; no reference is made to the
values of k and € on the wall nodes. The values of k
and € on the wall therefore, are prescribed arbitrarily
to be gzero, and have no influence on the solution scheme.
For enthalpy, the SHIP code provides the choice between
specification of an adiabatic wall or a constant
temperature one, for each wall. 1In the former case,
(prescribed zero-flux boundary condition),the value
stored as wall temperature does not enter the
calculations,

In the region close to the wall, the correct fluxes of
momentum are calculated through wall functions described
below.

b) ~ Wall functions

The expressions for I' appropriate to turbulent flow
are not strictly valid in the vicinity of wall
boundaries to the flow, where laminar viscosity plays
an important role. If the near- boundary grid nodes
are sufficiently far away from walls, the turbulent
viscosity can continue to be used for internal grid
nodes. However, means must be provided for
calculation of the correct shear stresses as well as
fluxes of other dependent variables at the wall
boundaries.
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Provisions for such calculations are made in the program,
and use the so-called wall-function concept. In this
concept, the flux of a variable ¢ at a wall boundary,

is expressed as:

'¢hear wall - '¢wa11

Ty wall 3 (3.4-1)
’ wall

1
wall

where Gw denotes the normal distance from the wall
to the near-wall point. Values of T are obtained
from the presumption that in the reg?égaaéjacent to
wall boundaries, the dependent variables obey, for
turbulent flow, a modified form of the semi-logarithmic
law-of the-wall. The formulae used to calculate

¢ wall 2re provided in Table (4).

TABLE 4. Diffusion Coefficient Formulae
¢ Ty, wall
Velocity components
normal to the wall 0
Velocity components + uy+
parallel to the wall y > 11.5 :
1 +
e fn {Ey'}
< 11.5 U
K 0
€ -
+ : y+
All other ¢'s y * 11.5: %
- e , -(K 2n {Ey '} + P¢)
( only for h "
in SHIP) ¢ 11.5: 5
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The definition of y*, in the table, is a
generalization due to Spalding {8} of the conventional
form, in that: ’ )

. pC
A (3.4-2)

R

where § denotes the distance from the wall, at a
"location with which the values of p and k are
associated. The constants K and E are obtained from
the conventional form of the law-of-the-wall:

ut = %zn {Ey") (3.4-3)

and are given values of 0.42 and 9.0 respectively.

The boundary conditions of k and £ are provided as
follows:

The diffusion of kinetic energy k, to the wall is known
to be negligible and is set to zero and a balance
equation for k, regular in other respects, is solved for
control volumes adjacent to wall boundaries. The
diffusion of dissipation rate € to such boundaries is
more difficult to express. Instead of the attempt to
calculate T 112 use is made of the knowledge that
the length Ee¥Ts 2 varies linearly with distance from
the wall, in the neighbourhood of the wall. The
dissipation rate is then calculated from this length
scale from:

3/2

s (3.4-4)

c. ?

_ k
near wall = D X

>
The practice adopted is to fix € to the above

value, without disturbing the geﬁg%alwgélculation
procedure, in the following manner:

€ —
SU - L €hear wall (a) (3.4-5)
sg = -L (b)

where L is a large number, say 1030.
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The expression i’or,r'dJ wa for a general dependent
variable ¢ is based'én.%%e expression indicated in
Table (4), the value of P, being calculated from:

¢
OQ OQ -t
P, = 9.24 G -1 G . (3.4-6)
¢ t,9 t,9
where o, and o denote the laminar and turbulent

values gf Prangt?/Sdhmidt number appropriate to the
transport of ¢. The above equation is used in SHIP
only for heat transfer.

3. Treatment 0f free-stream boundaries in supersonic flow

When the free-stream is supersonic, the velocities
normal to a free-stream boundary can be deduced from the
following equation: .

p - Dm 2

v = m:— M0 -1 (3.4-7)
2

where: M_ = p_ W, /Yp, (3,.,4-8)

and «» denotes undisturbed frée—stream conditions.

The above equation is based on the assumption that all
changes to the lateral velocities, from their free-stream
value along the free-boundary, have been brought about by
a succession of small waves emanating from the viscous
region. It has been programmed to compute the lateral
boundary velocities, normal to the free boundary under
consideration (i.e. the v-component for the North and
South boundaries, and the u-component for the East and

- West ones.

Note that:

1. The formula is valid only for M_ > 1

2. The formula assumes v_ and u_ equal to zero

3. In the computer program,p in (3.4-7) is actually,

pnb’ where nb denotes values at the near-boundary
grid point.



4. The density at the boundary node is calculated
from Pop? but otherwise from conditions at o,

The formula holds true whether fluid is caused by the
pressure changes to leave or enter the free boundary.
If fluid enters, its stagnation enthalpy should be that
of the free stream. .

The longitudinal boundary velocity is calculated from the
following equation derived from isentropic considerations:

x-1

clfw2eg 1o Do Poy Y 2 _ 2
Wy w <+ 2 =T o {1-(-=) } - % - (3.4-9)

-

where the subscript b denotes values at the boundary.

The derivation of equations (3.4-7) and (3.4-9) is given
in Appendix B.
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A DESCRIPTION OF THE COMPUTER PROGRAM

" Introduction -

In this chapter an overview of SHIP is given with a
description of the program flow and control, and
definitions of important variables.

General Structure

The general structure of the SHIP computer program is
shown in Figure (10), The divided, vertical box on the-
left is the main program MAIN, which has the chief function
of controlling the calling sequence of the subprograms.,
The starting point for SHIP is at the top of this box.
Points where calls of subprograms are made in SHIP are
denoted by horizontal lines. Arrows indicate the "flow"
of the computer program to and from the subprograms which
are shown in boxes. The major calculations and logical
decisions made by SHIP are indicated in the spaces between
the horizontal lines marking calling points in SHIP,

The subprograms are contained in subroutines which are not
individually called; and all start with an ENTRY statement.
The subroutines are therefore never ''called" by their

names, but by the name of the appropriate member subprogram.
(Thus CALL AUX is meaningless; but CALL SOURCE is a correct
statement). No subprogram has any argument; the information
is everywhere transferred through COMMON.

The SHIP program consists of 8 subroutines; they are given
the names BLOCK DATA, MAIN, ALLMOD, AUX, PRINT, SOLVE, STRIDA
and STRIDB. These subroutines can be classified in three

‘categories: problem-dependent, physical-modelling-dependent

and invariant. BLOCK DATA and ALLMOD are the problem-dependent
routines, i.e. they provide for specification of inlet
conditions, boundary conditions, geometry, fluid properties.
etec. AUX forms the physical-modelling section of the program;
in this the auxiliary quantities such as density and
viscosity are calculated from physical laws and from the
turbulence model. SOLVE, STRIDA, STRIDB and PRINT are the
invariant portions of the program; in SOLVE, STRIDA and
STRIDB, the calculation steps of section 3 are programmed,
and. in PRINT, instructions are provided to print out the
distributions of the flow variables.



START SHIP [ —F= - ~ =~
l CALC- STRIDO
ULATE
! MASS
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| STEP ~
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| ULATE SPECIE
| OVERALL
BALANCES -
| O\ | DENSTY
l .
| UPSTRM
l i — - e ea
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| | . YES . dependent variable
{
N o STRIDs _[=> SAME AS STRIDA ABOVE

FIGURE 10: GENERAL STRUCTURE OF SHIP COMPUTER PROGRAM
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The subprogram MAIN does not fit neatly into any of these
categories. It has a general (i.e. problem dependent)
structure, but care is necessary to ensure that its

general structure is kept intact. The routine MAIN first
calls routines STRIDO, STRID1 and BEGIN. Through these
calls, the initial information of geometry, grid and inlet
profiles is prescribed. A loop for forward steps is then
started. In this, calls are made in sequence, to routines
UPSTRM, DENSTY, VISCOS, GEOMOD, STRID3 and STRID4. By

these calls, the variables u,v,w,K,e and h at one down-
stream location are calculated. STRID3 and STRID4, in turn,
call routines dealing with the physical modelling section
AUX and the problem-oriented subroutines in ALLMOD. When
the finite-difference equations are assembled, through calls
to AUX and ALLMOD, SOLVE is called to perform the TDMA sweeps.
STRID3 contains four sections each having identical calling
sequences o0f routines placed under AUX and ALLMOD. STRID4
calls the same routines as called by individual sections of
STRID3; and solves the equations for the scalar variables
k, .€ and h. )

The remaining part of this chapter gives a general overview
of the computer program while succeeding chapters detail -the
operation of each subroutine.

Some Programming Conventions and FORTRAN Equivalents of

" Main Variables

A few of the FORTRAN names used in SHIP,which will be required
in the following sections, are introduced here. The dewendent
variables ¢ are stored in an array F, which it is convenient
to consider as a three-dimensional array F (I,J,NV). Here 1
and J denote the location (respectively along the & and n
directions) and NV identifies a particular variable. The
three velocity components and the pressure-correction are
included in the F array; however, for ease in understanding,
separate arrays U,V,W and PP are also used and made equivalent
to parts of F as follows:

U(I,d) = F(I,J,NVU)

S V(I,d) = F(I,J,NVV) : (4.3-1)
W(I,J) = F(I,J,NVW)

PP(I1,d) = F(I,J,NPP)

The identifiers NVU, NVV, NVW and NPP, also used to identify
U,V,W and PP elsewhere in the program, are assigned values
2,3,4 and 1. The largest values of I,J and NV for which
storage is provided in the program are denoted by IMAX, JMAX
and NNV respectively and assigned values 12, 20 and 9.
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Although two- and three- dimensional arrays have been
mentioned above, the computer program formally uses one-
dimensional arrays, whose subscripts are calculated each
time they are required. Thus, F(I,J,NV) is referred to
as F(IJNV), where:

IJNV = I + JM(J) + NFM(NV) (4.3-2)

the arrays JM and NFM being calculated once and for all
from:

IJM(J) = (J - 1) * IMAX .
: (4.3-3)
NFM(NV) = (NV - 1) * IMAX*JMAX
Also W(I1I,J) is referred t6 as W(IJ) where
IJ = I + JM(J) (4.3-4)

The four neighbouring points of the location IJ, corresponding
to the points of the compass are referred to as IJN, IJS,
IJE and IJW. These are calculated as:

IJN = IJ + IMAX
IJS = 1IJ - IMAX
IJE = IJ + 1 (4.3-5)
IJgw = 1J - 1

It is easy to see that points further removed become:
IJNE = IJN + 1 _ (4.3-6)
I1JSW = 1IJS - 1 ete. :

For a given problem, all members of the F array for which
provision is available, may not be required to be solved
for. TFurthermore,some of these variables may be obtained
from algebraic equations and not from solutions of the
partial differential equations. To provide for these
alternatives, use is made of an array ISOLVE(NV). TFor
ISOLVE(NV) equal to zero, the differential equation is

not solved; solution is obtained for values of ISOLVE(NV)
greater than zero. It is left to the user to make further
use of this facility.

Other arrays directly related to members of the F array are:
IPRINT(NV), TITLE(K,NV), FLUXN(I,NV), FLUXS(I,NV), FLUXE(J,NV),
FLUXW(J,NV). Values of F(IJNV) are printed out if IPRINT(NV)
is equal to 1; otherwise a printout is not obtained.
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FLUXN(I,NV), stores the fluxes of the variable NV, on

the North boundary; the others correspond reqpectlvely

to the South, East and West boundaries. TITLE(K,NV) with
the 1nteger K taklng values 1 - 9, stores a 36 character
alphanumeric title of the corresponding variable NV. This
is used to identify the values of the variables in the
printout.

The quantities k, €, h, f, and T form the remaining
variables of the F family. They are identified by the
indices NVK, NVD, NVH, NVF and NVT respectively and occupy
NV locations 5, 6, 7, 8 and 9 in the array F(IJ,NV). No
equation is solved for T; however, it is convenient to

store it at F(I1J,9). Quantities p, p and I' are stored as
P(IJ), RHO(IJ) and GAM(IJ). They are not members of the

F array, but are included along with F in a COMMON
statement, and immediately following it. They can therefore
be referred to as the (NNV + 1)th  (NNV + 2)th and (NNV + 3)th
members of the F array, as indeed they are in subroutine
PRINT. The integers NVP, NRO and NMU are used to identify

them.

Although, in general, the values of T are different for

each dependent variable, storage provision for only one

set of T''s is retained. Hence, at a given stage in the
program, the GAM array contains the values of I, appropriate
to the dependent variable under consideration.

Similarly, provision is made, for the retention of one

set of coefficients of the finite~difference equation at a
given stage. Thus, AXP(IJ), AXM(IJ), AYP(IJ) AYM(IJ) and
Az?IJ)respectlvely represent the coefficients AE’ AW’ AN,
Aé and A g 1in equation (3.2-4).

Similarly, SU(IJ) and SP(IJ) represent S and SP respectively

in equation (3.2-3). The quantities like DY in® equation
(3.2-9) are stored as DU(I1J), there being similar arrays
DV(IJ) and DW(IJ) for the corresponding quantities
associated with the v- and w- momentum equations,

Program Control

Program Control, including start, internal monitoring and
stop functions, is achieved through subroutine MAIN.

Using the information supplied through BLOCK DATA, the first
part of MAIN calculates and assembles all the geometrical
information about the grid system through calls to STRIDD

and STRID1l. Following this, in the same part, a call to
BEGIN supplies the initial conditions for all the

dependent variables. Having provided the starting conditions,




MAIN theﬁ enters the marching-integration loopn.

This part begins with the statement: 6¢ CONTINUE,

Next, mass sources (SUM), step length (DZ)

and the location of the station for the new calculation
(ZD), are determined. This is followed by calls to SPECIE,
DENSTY and UPSTRM. SPECIE calculates the chemical specie
composition from element compositions, temperature and
pressure. DENSTY is another member of the physical-modelling
subroutine AUX, wherein the fluid density p, is calculated.
UPSTRM stores the unstream values of the axial mass-flow-
rate (GZ(IJ)), of the pressure (PU(IJ)) and of the height
and width of the calculation domain (BYNU and BXEU) required
by the calculation procedure. -

After calculating and printing the fluxes of the major F
arrays to check their overall balances, a call is made to
VISCOS which calculates the diffusion coefficients for
momentum and modifies them properly to account for the
presence of solid walls if necessary.

If ISTEP equals NPJUMP, profiles of variables specified

by IPRINT(NV)=1will be printed out through a call to mnrint.
Otherwise, only overall balance information and station
location will be printed out.

The next section is for the calculation of the velocity and
pressure fields. TFirst a check is made to see whether
injection through either or both North and South boundaries
occurs. If this test is positive, a call is made to INJMOD
(for the South boundary) and/or INJMOT (for the North
boundary) which provide the appropriate boundary conditions
through source terms, It should be mentioned here that

no restriction is placed upon the relative simultaneous
spacing of the North and South injectors. Next a check is
made to determine whether the station for calculation is
immediately downstream of injection. If this test is
positive the number of sweeps on the pressure correction
equation and the :step length are modified to increase .
accuracy and stability of the program. The calculation is
stoppred at this point if ISTEP > LASTEP.

Next a check is made to determine whether the flow domain
under consideration presents varying geometry with axial
distance or not. If this is true (IARCH=2), a call is made
to subroutine GEOMOD and STRID1l, in order for the geometrical
changes to be taken properly into account. If the domain

of interest retains constant cross-section along the axial
"distance, the above two subroutines need not be called.
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After this test, another is performed to determine

whether any of the four boundaries (North, South, East -

and West) is a free-boundary. 1If this test is positive,
the free-boundaryv conditions are incorporated.

Namely, the program calculates here, for

any free-boundary, the proper densities and velocities

as dictated from the small-wave theory (for the

lateral velocity components) and from the isentropic
formula (for the axial velocity component). These formulas
have been discussed in detail in Section 3.

Next a check is made to determine if ISTEP=0 which, if
positive, results in an iteration on the hydrodynamic and

turbulence equations to improve the starting profile.

After this series of tests, a call is made to STRID3 which
vields the velocity and pressure fields. A call to STRID4
performs similar calculations for all other dependent
variables.

Then the program calculates and prints out the local values
of wall fluxes at every existing wall and their averages.
Useful quantities calculated here include mean velocity and
dynamic head, total areas, wall shear stresses, drag
coefficients and Stanton numbers.

Finally the value of ISTEP is incremented and, depending
upon a pre-determined criterion, calculations are continued
for the next station or terminated. This criterion is the
limiting value of the forward distance. If ZU < ZLAST,
control is returned to a point in MAIN just after the CALL
BEGIN statement, and the process repeated for the next
station.

Detailed List of Program Variables

All variables used in common statements are defined in
Appendix €. Variables which appear locally are defined
by their use in the computer program and are not defined
in this report. .




5.
5.1

THE INVARIANT PORTION OF SHIP

Introduction

Many of the calculations do not need changing for different
boundary conditions, ete., In this chapter the function of

the invariant portion of SHIP is given. Again, import
variables are defined. ' 8 ’ o ant

STRIDA

STRIDA consists of three separate sections which are called

through ENTRY statements. STRIDO and STRID1, the first two,

calculate quantities related to the grid arrangement. The
information supplied to STRIDA through BLOCK DATA is LCV,
MCV and ZETA(I), ETA(J). The former represent the number of

¢-control volumes along the ¢ and n directions; and the latter

denote the grid disposition in non-dimensional coordinates.

Given the above information, STRIDO, the first member
subroutine of STRIDA, computes the maximum number of grid
nodes in the I and J directions. This is done in the
following sequence: |

L = LCV + 1

‘M = MCV + 1

IP1 = L + 1 (5.2-1)
MP1 = M + 1

It is emphasized here that users must ensure that LP1 and
MP1 are always less than or equal to IMAX and JMAX
respectively. The latter represent the maximum dimensions
of all variables in the respective directions and are given
values accordingly in BLOCK DATA. Following the above
sequence, the integer arrays JM and NFM are filled in
accordance with equation (4.3-3).

The second member of STRIDA is STRID1. STRID1 is called
once at the beginning from MAIN and never again if the
calculation domain cross-section remains unchanged. For
domains of axially-varying cross-sections it is, however,
called at every step from MAIN. It is in STRID1 that the
physical coordinates x and y are computed from the values
of AGEOM, ETA and ZETA, as follows:

X(I)
Y(J)

ZETA(I)*BXE (5.2-2)
ETA(J)*BYN
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ETA(J) is initially calculated as:

ETA(J) = ETA(J-1) + AGEOM**(J-2)*DELY (5.2-3)
where:
DELY = BYN* (1.0 - AGEOM)/(1.0 - AGEOM**M) (5.2-4)

Here, BXE and BYN represent the width and height of the
calculation domain respectively ({XE - X,} and {Y, - YS}
respectively); as such, they are to be specified gy the

user in BLOCK DATA. It should be mentioned that any ETA
distribution can be used; the distribution (5.2-3) is just

an example; it makes use of a geometric series for specifying
successive intervals between ETA's. Larger values of AGEOM
result in the grid being '"crowded" closer to the y = 0
surface.

The width and height of the calculation domain are allowed,
in SHIP, to be varied with axial distance; their new values
being calculated by the expressions:
BXE BXEU + DBXEDZ*DZ
BYN = BYNU + DBYNDZ*DZ

(5.2-5)

where BXEU, BYNU represent the upstream (i.e. of previous
station) values of BXE, BYN and the quantities DBXEDZ, DBYNDZ
(i.e. the slopes of BXE and BYN respectively) are specified
by the user. :

The ratio of cell areas in the £-n plane between upstream
and downstream stations is also calculated in STRID1, and
stored as ARAT; the expression for this ratio is:

ARAT = (BYNU*BXEU)/(BYN*BXE) (5.2-6)

The subsequent operations in STRID1 deal with calculation of
various inter-grid distances required later in the
calculation of the coefficients. These distances are

shown in Figure (11), which illustrates the grid in the

n-£ plane and the nomenclature described below.
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FIGURE 11: GRID SHOWING NUMBERING, MAIN CONTROL
VOLUMES AND_FORTRAN DEFINITION OF GRID
QUANTITIES. (CARTESIAN COORDINATES)
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The dashed lines in figure (11) join the control-volume
faces normal to the X and y directions. These are the
control volumes for all dependent variables except the u
and V velocity components. The control-volume faces pass
mid-way between the grid nodes except near the boundaries
where they pass through the boundary grid nodes. Thus,
the control-volume faces always pass through points where
the velocity component normal to the faces are stored., A
normal velocity component at a control-volume face is
presumed to prevail over that whole face.

The control-volumes for each of the velocity components

u and v are displaced along the directions of these
velocities. The control-volume faces normal to each of
these directions pass through grid nodes on either side of
the velocity component in question. Figure (12) illustrate:
this point. .

J+1

V(I+1, J)

FIGURE 12: U= AND V- VELOCITY CONTROL VOLUMES




The independent variables x, y are stored as the coordinates
X(I) and Y(J) of the grid lines. Certain related quantities
are necessary and are calculated and stored here, either
once-for-all if the domain cross-section remains unchanged, or
at every station if it changes. Among these XS(I), XDIF(I)
and XSU(I) are derived from the values of X(I) such that:
XS(I) denotes the x-direction length of a main control-
volume around the node (I,J); XSU(I) is the x-direction
length of the control-volume for U(I,J). (Note that XSU(I)
is the same as XDIF(I) except near the boundaries of the
calculation domain). Incidentally XS(I) is also the
distance between the locations of U(I,Jd) and U(I + 1,J) and
performs the work of XDIF(I) for the equation for u. The
meanings of YS(J), YDIF(J), and ¥YSV(J) should now be
obvious. The geometric quantities associated with the grid
system are defined in Table 5.

Because the faces of the main control-volume are defined

to pass midway between the grid nodes, interpolation factors
for the calculation of variables on these faces are equal

to 0.5, except near boundaries where they are either 0 or 1.
For the control-volumes appropriate to U- and V- velocity
components however, the interpolation factors can differ
from 0.5 if the spacing between grid nodes is chosen to be
non-uniform. For this reason, interpolation factors are
calculated in STRID1 and stored as FXP(I), FXM(I), FYP(J)
and FYM(J). The subscript refers to a grid node. The value
of U for example at a grid node (I,J) is given by:

F)ﬂ)l(I)‘* UCI + 1,J) + FXM(I) * U(I,J) (5.2-7)

It is obvious from the above that FXM(I) is simply .
1.0 - FXP(I), The expressions for FYP and FYM are similar,
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TABLE 5. Definition of Grid Geometric Quantities
NO GRID MEANING
OQUANTITY
L . . )

1. X(I) Physical coordinate in the E-direction;
.u represents x in cartesian coordinates.
2 XDIP(I) The difference between X(I) and X(I-1);

Ll used as the distances 6 in calculating
E—direction diffusion flux of ¢:
A¢/6
3 X8(1) The E- dlrectlon width of a maln control
N volume.
4 . XSU(f) " The £-direction width of a U—veloclty
' control volume.
5 Y(J) Physical coordinate in the n~direction;
S " represents y in cartesian coordinates.
6 YDIF(JT) | The difference between Y(J) and Y(J-1);
: ' used as the distances in calculating
n—-direction diffusion flux of ¢.
7 YS(J) i  The n-direction width of a main
. ' control volume., .
8 The n-direction width of a'v—veloc1ty

YSV(J)

control volume.
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Calculation of the quantities tabulated above completes

the tasks performed by STRID1. STRID1 is called once

from MAIN to calculate the initial grid cguantities;
thereafter, if IARCH = 2, i.e. variable areas of the
integration plane are to be accounted for, STRID1 is called
from MAIN at every sten, after a call to GEOMOD has
provided the necessary information for the cross-section
change,

The third section of STRIDA, namely STRID2, aids partlv in
the calculation of the coefficients in the finite-difference
equations. STRID2 is used to calculate and store the
convective mass velocities (i.e. the terms in square
brackets in equation (2.3-2) crossing the control volume
faces along the &~ and n-directions.

The arrays GX and GY are used, respectively to store these
values. STRID2 is called for each integration plane, once
at the beginning of STRID3, then again from STRID3 after
the grid has been adjusted to fit the downstream geometric
configuration., Finally STRID2 is called from STRID4, after
the u and v velocities have been corrected.

" STRIDB

STRIDB is ‘the largest and perhaps the most important
subprogram. STRIDB is the main machinery of the SHIP
program and contains instructions to calculate the 'A'
coefficients in the finite-difference equations (3.2-4)
and (3.2-7) to (3.2-9), The coefficients are assembled
in STRIDB based on the convection and diffusion fluxes
in the three coordinate directions. STRIDB contains
two member subroutines: STRID3 and STRID4.

It is in STRID3, that the finite-~difference eguations
anpropriate to U, V, W and PP are assembled, in that

order; while STRID4 assembles the coefficients for all

other equations such as for kinetic energy of turbulence, Kk,
etec. The first entry statement to STRIDB is STRID3.

STRID3 calls first STRID2 to assemble the mass fluxes GX,

GY and GZ crossing the respective cell areas. These values
are computed at any section, from the upstream distributions
of u, v and w.

The first equation assembled by STRID3 is the u-momentum
equation. Later, in sequence, the v, w and pressure-
correction equations are solved. Since the structure of
FORTRAN instructions is similar for all equations, it is
sufficient here to explain that for one of them only.
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For the u-momentum equation, the details are as follows:
The statements defining ISTR and JSTR specify the
starting I value and J value for the equation. For the
u-velocity equation, ISTR is 3 and JSTR is 2; for the
v~velocity, ISTR = 2 and JSTR = 3; for others '

ISTR = JSTR = 2, The next imnmortant instruction

is a call to GAMMA; GAMMA calculates the diffusion
coefficients that enter the finite-difference equations.
GAMMA in turn, makes a call to GAMOD whereby account is
taken of the modifications for the-:-boundaries. In the
present version of SHIP, the call to GAMOD is redundant.

A subsequent call to SOURCE computes the source terms in

the equations., It should be noted that the SU and SP are

 such that:

S = SU +8P*¢p

where S is the source term of the equations. This source
term is then integrated in STRID3 over the control

volume.

The calculation of the A coefficients starts first with the
calculation of the upstream convection coefficients, denoted
by ALZ(IJ). These are merely the mass fluxes over the cell
areas normal to the Z direction. In the cross-stream the
coefficients are calculated first for the near-boundary

nodes. :

The first statements calculate coefficients arising from
the J = 1 boundary (i.e. pertaining to AYM for J = 2); '
and the next statements calculate those for the I = 1
boundary. Then in a DO loop, the coefficients for the
other interior nodes are calculated. The AL-s represent
the convection part (the L's in equation (3.2-5)), and the
T-s represent the diffusion part (the hyphen stands for

X or Y depending on the direction considered). The high-
lateral-flux modification is then introduced. Then, the
pressure gradient term is calculated; DU is the area over
which the pressure forces Act; and SU is the source term
summed up along with the contribution of others., When all
the coefficients are assembled, a call to SOMOD 1s made to
determine whether any of the earlier computed coefficients
and source terms require modification, to account for the
particular flow-geometry. Once this is achieved, a call
to SOLVE permits solution of the linear algebraic
equations to be obtained by sweeps of TDMA.

The other subsections of STRID3 perform identical operations.
First the v and w equations are solved in a manner similar
to that for u. After this is done, the requirements of



overall mass continuity are examined. Then, the coefficients
for the pressure-correction equation are assembled. The
calculation of these coefficients is similar to that for
other equations; but it is to be noted that for the pressure-
correction equation, AZ is identically zero; and the term SU
is the mass source. It is important to note here that

the mass flux from the downstream face (i.e. pw*) is
calculated from an updated density at the downstream face.
The pressures and velocities are subsequently corrected

and this concludes STRID3.

The assembly and solution of the finite-difference

equations of other dependent variables is done in STRID4.
Before STRID4 is started, a call is made to STRIDZ2; this is to
calculate the new values of GX, GY based on the newly
calculated u and v velocities. The operations in STRID4

are similar to those explained in STRID3.

At the end of STRIDB,-the directions to perform the TDMA
sweeps are given. The indices IXY, ISWP and JSWP are
changed through the statements

IXY=2-IXY )
ISWP=3-1ISWP (5.3-1)
JSWP=3-JSWP
The completion of STRID3 and STRID4 yields new distributions
of all variables and the pressure p at a downstream
location. The repetition of STRID3 and STRID4 at

several forward steps is controlled by the main program
SHIP.

Solution Procedure for Algebraic Equations

The Subprogram SOLVE

The function of the subprogram SOLVE is to arrange for the
solution of the finite-difference equations, for each
dependent variable NV, to be obtained. The solution
procedure used is the application of a pair of TDMA
traverses, one in each of the £-and n-directions.

SOLVE has three major sub-divisions, The first ends with

the statement: 10 CONTINUE. It is in this part that the
finite-difference coefficients are assembled in readiness

for the subsequent operations. It is here that our fully-
implicit difference scheme is implemented during the
coefficient-assembly process; incorporation of other

schemes will require some modification of this part of SOLVE.
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The second part of SOLVE is concerned with TDMA traverses
in the E-direction and ends with statement: 21 CONTINUE

The third and final part of SOLVE starts with this statement
and concerns the TDMA traverses in the n-direction.

A call to SOLVE is made from STRID3 and STRID4, once for
each dependent variable NV. This call achieves TDMA
traverses in both the £- and n-directions; however,

which traverse is made first depends upon the value of the
index IXY. The first traverse direction will be & if

IXY = 1, and n if IXY = 2, 1IXY is set alternately to 1 or
2 by the statement: IXY = 3 - IXY which concludes both
STRID3 and STRID4. '

Along each traverse direction, the direction of sweep i.e.
whether from the first grid node to the last or vice versa,
depends upon the value of an index, ISWP in the &-direction
and JSWP in the n-direction. Each of these indices takes
on a value 1 or 2 by statements which follow the end of
parts 2 and 3 of SOLVE. For example, the statement
following: 21 CONTINUE, reads JSWP = 3 - JSWP. A value

1 implies that the sweep direction is from first to last
grid node and 2 implies vice versa.

On occasion, it may be required to perform more than one
pair of TDMA traverses in a £ - n plane, for any given
dependent variable. The number of pairs of TDMA traverses
is set by values assigned to an index array NSWP(NV). The
program is set up with NSWP values equal to unity except
for the pressure-correction equation for which NSWP(NPP) = 3.
For locations near injection points the NSWP values are :
increased to ensure stability and accuracy.

" Printout of Field Values of Dependent Variables

PRINT(ISKIP, JSKIP)

It is frequently required to print out the contents of the
F-array. This task is performed by subroutine PRINT,

PRINT(ISKIP, JSKIP) provides for the printout of F(I,J,NV)
where NV can attain a maximum value of NFPMAX, which is set

as:
NFPMAX = NNV + 3 (5.5-1)

The three extra values representing NVP, NRO and NMU, i.,e.
pressure, density and effective viscosity respectively.
The decision as to whether a particular variable NV is
printed out or not, depends upon whether the corresponding
IPRINT(NV) is equal to unity or not. '



The printout of each dependent variable NV is given a
heading stored in TITLE(...,NV). The formal parameters

ISKIP and JSKIP permit the selective skipping of columns
(I) and rows (J), when it is not required,

_ for any reason,
to printout the complete array of values of each variable.

59



60

THE PHYSICAL MODELLING SECTION OF SHIP

Introduction

This chapter describes the portion of SHIP which calculates
the physical properties required in the solution procedure.

AUX

The general policy is to confine all tasks associated with
physical modelling to subprogram AUX. Thus the calculation
of density, p, effective diffusion coeffid¢ient T, and sources
and sinks S of the dependent variables are performed in
separate member subroutines in AUX, namely, DENSTY, GAMMA,
SOURCE, VISCOS and SPECIE.

AUX to a large extent, is an invariant subroutine; it need
not be changed unless different physical laws and turbulence
model need to be incorporated. AUX is not called as such
from any subroutine; instead the various parts mentioned
above are referenced to when necessary.

DENSTY

This subroutine calculates the densities pp y {RHO(I,J)}
and Pp {RHOD(IJ)} in accordance with the discussion of
Section 3.2-6. At each forward step new RHOD(I,J) are
calculated from guessed values of pressure. After
calculating the starred velocity fields, RHOD(I,J) are
changed to correspond to the new velocity distribution.

VISCOS

The function of VISCOS is to calculate the viscosity,

both laminar (if necessary) and turbulent. In its present
form, the laminar contribution has been neglected, since
the flows under consideration are highly turbulent. Hence,
the major function of VISCOS is to store the turbulent
viscosities.in the array AMUT(I ,J).

VISCOS also performs the function of calculating for the
N,S,E and W boundaries, the effective boundary diffusion
based upon the semi-logarithmic law-of-the-wall. These
di ffusion coefficients are stored respectively in the

arrays GAMN(I), GAMS(I), GAME(J), and GAMW(J), which are
later substituted in appropriate GAM locations by GAMOD.
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GAMMA

This part of AUX is used to set values to the exchange
coefficients array GAM(I,J). These are calculated simply
as:

GAM(I,J) = AMUT(IJ)/PR(NV) (6.2-1)

A call to GAMOD is then made in order to permit any
modifications to be made to the GAM array.

SOURCE

The section headed by SOURCE is concerned with the
calculation of the finite-difference form of the source
terms in the equations stated in Table 1. The

source terms for each variable are programmed under
separate subsections; and choice is made through the NV
indices (e.g. NVU, NVV etc,). The source terms calculated
in SOURCE are for unit volume and represent volume averages;
they are multiplied in STRIDE by the volume of the appropriate
control volume. The production term for the kinetic-energy
of turbulence, k is calculated also in AUX, and is stored

in the array GENR(IJ).

It may be noted that all source terms contain two components
SU and SP., SU is that part of source terms which is
calculated completely from upstream values of the variable;
SP is the linearised part. In total they express combinedly
the relation ' '

S, = SUCI,J) + SP(I,J)*F(I,J,NV) (6.2-2)

It is necessary to ensure that SP is always negative.

' SPECIE

Subroutine SPECIE is used to calculate the species mass
fraction from knowledge of the element mass fractions,
pressure and temperature. Appendix A gives a full
development O0f the technique employed. '
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" PROBLEM-DEPENDENT SECTIONS OF SHIP

" Introduction

This chapter completes the detailed description: of the
functions of the various portions of SHIP by discussing
the subroutines which must be changed in order to specify
a particular problem.

" General Policy

As mentioned briefly earlier, the main machinery of the
numerical calculation procedure is devoid of any problem-
specification information; the latter is provided through
subroutines BLOCK DATA and ALLMOD. It is envisaged
therefore, that detailed modifications to the above-
mentioned routines, may require to be made for each new
problem and should be done so with care.

BLOCK DATA

BLOCK DATA serves to provide values to fluid properties,
grid distributions, program control parameters and other
information specific to each new problem, via DATA
statements. The use of BLOCK DATA permits the vpnrogram to
be run with compilers common to both CDC and IBM machines.

In the present version of SHIP the above information is
given in chapters. Thus, Chapter 1 deals with preliminary
information such as SMALL, GREAT etc. Chapter 2 provides
the information necessary to specify the grid and geometry.
Chapter 3 is concerned with the dependent variables
information and Chapter 4 with the physical properties data.

.Chapter 5 provides some starting values whilst Chapter 6

is concerned with step control. Chapter 7 provides the
fixed boundary conditions and indices; finally Chapter 8
provides the indices required for printing-out.

ALLMOD

Subroutine ALLMOD contains instructions for incorporating
specific information regarding the flow geometry, and for
any specific changes to the coefficients in the finite-
difference equations, or to the variables themselves.
ALLMOD is divided into several "MODification'" routines
which will be described below, More specifically, it is
composed of seven member subroutines BEGIN, GAMOD, GEOMOD,
SOMOD, UPSTRM, INJMOD and INJMOT.
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7.4-1 BEGIN

7.4-3

The primary purpose of this subroutine ?s to provide
initial values to all the dependent variable arrays,
fluid-property arrays and other auxiliary arrays, SO

that the marching integration can start. The 1n}e§ values
of velocities, temperatures and turbulence quantities are
specified here. Also here, o, the turbulent Prandtl
number for dissipation of kinétic-energy of turbulence

is calculated from the relation:

K2

= — | (7.4-1)
’e (02;01)Cé

Experience with the k-¢ model of turbulence has shown that the
above relation, though it applies strictly to the wall region,
bProduces satisfactory results for regions far from the wall.
This relation is derived by eliminating the convection terms
from the conservation equation of ¢ and by evaluating the
production terms of e fram the logarithmic law of the wall.

The secondary purposes jinclude provision of 'fixed' boundary
conditions on the four boundaries of the calculation domain,
and calculation of some auxiliary information required in
the initialising process.

The preliminary calculations for incorporating the free-
boundary conditions are also made here, depending on the
values of the indices KBCE, KBCW, KBCN, KBCS. A free boundary
is implied when the value of the above coefficients is 3.

It should be noted that the quantity MW/RT used in the above
calculations for the free-stream, assumed MW = 28.93. This
should change if the free-stream is not pure air. The user
will be reauired to give careful attention to this section.

GAMOD

GAMOD is provided to allow the exchange. coefficients GAM(I,J)
computed in AUX to be modified, as necessary, to incorporate
the required boundary conditions.

As a matter of fact, the contents of .GAMOD in the present
version of SHIP are redundant. The requirecd modifications
are made directly to the 'A' coefficients in SOMOD.

GEOMOD

"GEOMOD is the subroutine where modifications to the geometric

configuration of the calculation domain can be prescribed.
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To activate GEOMOD, IARCH is set equal to two; otherwise, the
geometry will be a rectangular solid set by the initial condi-
tions. The code can handle any geometry in which there are no
sudden or discontinuous changes in domain size and the cross
section of the domain normal to the main flow direction is
rectangular. The geometry is determined by four constants
whose magnitudes are set in GEOMOD. These constants (with
definition) are:

DXWDZ = rate of change of distance between reference plane and
west boundary with respect to distance in the main flow
direction.

DYSDZ = rate of change of distance between reference plane and

south boundary with respect to distance in the main
flow direction.

DBXEDZ = rate of change of width of domain with respect to
distance in the main flow direction.
DBYNDZ = rate of change of height of domain with respect to

distance in the main flow direction

The values of these four quantities are determined by the given
domain and can either be constants or functions of distance in
the main flow direction.

SOMOD

The purpose of SOMOD is to facilitate modifications to the
source terms SU(I,J) and SP(I,J) and the coefficients in
the finite-difference equations, AXM(I,J), AXP(I,J) etc.
SOMOD, together with GAMOD, achieves the final form of the
finite-difference equations before they are solved. At
present, the function of SOMOD is to incorporate the wall
functions and the symmetry boundary conditions; but a
greater amount of modification, such as creating internal
obstacles etc., can be achieved through SOMOD. SOMOD is
divided into several sections each dealing with a separate
variable. .- For the equation for pressure-corrections no
modifications are made.

As mentioned earlier, the provision of wall-functions is made
through SOMOD. This is achieved as follows: first,
coefficients linking boundary grid nodes with their immediate
neighbours inside the calculation domain are set to zero for
each variable. This is done because, by incorporating the
wall functions, we ‘are prescribing the values of the fluxes
directly; and hence whatever values are calculated earlier

in STRIDE for the coefficients must be set to zero. Then if
an index, for example, KBCS for the South boundary, is set
equal to unity, the appropriate wall flux is calculated and
fed in through SU and SP. This calculation uses the value



7.4-5

7. 4-6

of GAMS(I) (calculated in AUX, and brought here through a
COMMON statement); and the corresponding flux, FLUXS(I,NV)
of the dependent variable is stored for purposes of print-
out. If the index is other than unity, no change is made
to the coefficients. Similar indices KBCN, KBCE and KBCW
are used for the North, East and West wmllq. Note that

for the v-velocity, for exmmple, tThere are no modifications
for the North and South walls since they are normal to ‘that
veloeclty. For the w-velocity the wall functions for the
above wall boundaries are similar to that for u. Such
checks and modifications are made for the variables u, v,
w, k, €, h and £, .

The modifications to the source term for k consist of
altering the generation and dissipation based on shear-stress
from the wall functions, For the dissipation equation,

the value of dissipation is fixed according to equation
(3.4-4), by modifying SU and SP. Setting SP to a large

negative value (- 10 ) and SU to a large poqltlve value
multiplied by the required value to be fixed (1030¢ €y x)’
we nullify the effect of other coefficients (since %
they will be divided by SP), and obtain ¢ equal to the
desired value ¢ . This practice is adopted in general
for fixing any varlable at a desired value.

The user of course may be required to provide other types
of boundary conditions himself, again through SU and SP.
In this respect, choices of the index values other than
unity can be profitably put to use.

UPSTRM

The subroutine UPSTRM makes provision to store upstream
(i.e. previous integration plane) values of pressure which
are necessary in calculating the source term of the axial
velocity component. The upstream values of the width

and height of the integration domain are also stored here,
for variable geometrical configurations. UPSTRM is also

a convenient place to calculate the axial direction mass
flow rate. It should be noted that upstream values of any
other variables apart from pressure are not reguired to

be stored. This should be the case only if iterations
were necessary. '

INJMOD
This subroutine is primarily used to specify the correct
flux of a given variable through the array FINJ(NV). This

array is used to modify the source term in SOMOD when
injection occurs through the South wall,
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7.4-7 INJMOT

This subroutine has a function identical to that of INJMOD
above, but for injection occuring through the North wall.
INJMOT and INJMOD may be called either simultaneously or
separately from MAIN; this depends on whether injection
occurs through both walls or through either wall and is
also decided in MAIN.
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SOME USER'S GUIDANCE IN ADAPTING SHIP FOR A GIVEN PROBLEM

" General Remarks

The following steps are necessary in adapting SHIP for a
given problem.

a., Provide the following information in BLOCK DATA

Program control parameters

Grid and geometric specifications
Printout control parameters
Solution procedure parameters
Fluid property values

Thermodynamic and hydrodynamic data appropriate
to the problem

Fine-tuning of the turbulence model constants
to optimise the results,

b. Provide adequate initial values to variables in BEGIN.
It may be required, for example, to chose a grid

disposition (ZETA (I) and ETA (J)) to suit known initial

distributions of dependent variables.

¢c. Check if known boundary conditions are cbrrectly set
and unknown values correctly calculated.

d. Incorporate the exact geometric configurations of the
problem into the appropriate sections of ALLMOD.

e. Arrange in PRINT, for requisite printout

List of Input Variables

Following is a list of input variables to be supplied to
the SHIP program; they correspond to the variables defined
in the BLOCK DATA routine at the beginning of the program.
The following information is given for each variable.

(i) the FORTRAN symbol
(ii) the meaning
(iii) for some variables, the recommended value

is given in the last column.



SYMBOL MEANING |REC
VALUE
1.,  For Program Control
IMAX They correspond to the dimensions of the
JMAX major arrays.
NNV The number of variables (NV) for which the
F array is dimensioned.
NPP, T , .
NVU hey.are variable numbers having values
’ ranging from 1 to 10.
etc.
ISTEP The step number; it is initialised -in BLOCK DATA.]| O
IARCH Specifies whether the flow is to be treated as: |
one of constant geometry, 1
or varying with axial direction. 2
FRA The initial step length. '
FRAM The maximum step length.
EX Expansion factor for step length. FRA at step n,
(FRA_ ), is equal to FRAn_l*EX or FRAM whichever
is smaller.
ggék%' Small and large numbers used at various places 10530
in the program, 10
2. Grid and Geometry Variables
LCV Total number of control volumes in the &
direction.
MCV Total number of control volumes in the n
direction,.
ZETA The disposition of grid nodes in the £
direction. ZETA ranges from 0 to 1 always
and is given, in general, by
= X(I)
ZETA(I) = BXE .
ETA The locations of the grid nodes in n direction

ETA(J) = %%%)
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SYMBOL MEANING REC
' ' VALUE

KBCN Specify the nature of the North, South, East
KBCS and West Boundaries. Thus for: _
KBCE Wall boundary 1
KBCW Symmetry axis 2

Free boundary 3
BYN Height of the domain. BYN must be

initialised to the value at the inlet plane.
BXE The extent of solution domain in the

x-direction.
2U, 2D | Axial locations of upstream and downstream

computational planes - must be initialised

here. 0.0
DZ Axial step length. The value set here is

overwritten by that calculated from FRA

specification.
DYSDZ dyg/dz - initialised here to zero. 0.0
DBYNDZ d(BYN)/dz - initialised here to zero. 0.0
ZLAST The z location at which solution is terminated.

3. Contfpl_yariables for Printout
ZRE The 'z' locations of the axial stations at

which the distributions of the variables

are printed out.
LASTEP The total number of axial steps at which the

variables are to be calculated. At present it

should be set to a large value so that the

solution is terminated by ZLAST.
NPJUMP The number of stevns between successive

.printouts of the variables.
ICJUMP Has the same meaning as NPJUMP:; but it controls

printout of wall fluxes.
IPRINT Specifies whether the distribution of the NV
(NV) variable should be: '

Printed 1

0 .

Not printed
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SYMBOL MEANING
' VALUE
4. 'Soiution Procedure Parameters
ISOLVE The value of ISOLVE(NV), specifies whether
(NV) or not variable number NV is to be solved
for. ’
ISOLVE = 0 does not solve for the variable
ISOLVE = 1 solves for the variable.
NSwP Number of TDMA sweeps performed on variable 6 for NV=1
(NV) NV at each step. and 3 for
all others
IXY These variables control the order of
ISwWP TDMA sweeps at each step. Recommended 1,1,1.
JSWP starting values are unity for all.
5. Turbulence-model Constants
C1 1,44
c2 1,92
CD 0.09
AK K in the log law,. 0.42
EE E in the log law. 9.00
PR(NV) Turbulent Prandtl numbers for the variables.
" | Their values are set initially to unity.
However for the dissipation of ¢, PR is later
calculated from the expression
PR(NV) = K2/((Cg-Cy) Cp?); further, PR for
enthalpy is somewhat less than unity, equal
approximately to 0.90. '
AKFAC Factor relating turbulence energy to mean
motion energy. 0.004
PJAY The P function in the "wall functions"
(resistance of laminar sublayer).
6. Fluid Properties
PRLAM Laminar Prandtl number for variable NV
(NV)
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SYMBOL MEANING o REC

- - VALUE
WM Molecular weight and universal gas constant
GASCON for the gases considered, At present GASCON
is taken to be 8314 m2/sec29g
AMUREF Reference laminar viscosity.
DEN Reference density.
CP . Specific heat.
CPDCV Specific heat at constant pressure divided by
specific heat at constant volume. 1.4
HO Enthalpy of formation.

7. Starting Values

UIN

VIN Inlet x-, y- and z- direction velocities.
WIN

PIN Inlet pressure,

TIN Inlet free stream temperature.

RETRAN Transition Reynolds number, .

8. Boundary Conditions

IINJ Indices to control entry to INJMOD and INJMOT,
IINJT respectively.

INJSTP Values of ISTEP at injection locations on
INJTOP the South and North walls, respectively.

ZINJ z locations of injection, for the South
ZINJT and North walls, respectively.
TINJ Jet temperatures, for the South and North

TINJT walls, respectively.

FLOINJ Mass flow rates injected by a jet through
FLOINT the South and North walls, respectively.

IADIAN Indices specifying whether the North,
IADIAS South, West and East walls, respectively
IADIAW are adiabatié¢ (=1) or under constant
IADIAE temperature (=0),




SYMBOL MEANING REC
: — — __VALUE
TWALLN _
ﬂﬁiﬁ North, South, West and East wall
TWALLE | temperature, respectively.
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The units used by the program are: Kg, m, sec. It may be
convenient, however, for a humber of input quantities to be
specified in other units; this can. be done provided that
the conversion to Kg, m, sec is then effected internally.

A comvlete list of FORTRAN variables is given in
Appendix C.

The Grid

® The axial grid is specified via the variables FRA, FRAM
and EX, defined in the list above.

e To change the grid distribution in X and ¥, while
retaining the same total number of nodes in each direction,
simply reset the ZETA (I) and ETA (J) arrays.

e If the number of grid nodes is to be changed, then LCV
and MCV must be reset, and ZETA and ETA must be
respecified. Note that the number of ZETA values provided
must be LCV + 2, and the number of ETA values must be
MCV + 2,

e Vhen the number of grid nodes is increased it may be
necessary to redimension some of the arrays, as it is
described below.

e Note that, whenever the grid distribution is changed,
it will be necessary to reset the inlet conditions
accordingly.

Dimension Changes

The quantities IMAX, JMAX and NNV must be set to correspond
to the reauired dimensions of the arrays in I, J and NV
(thus IMAX > LCV + 2, and JMAX > MCV + 2). The arrays must
then be dimensioned as given in the table below, and

the EQUIVALENCE statement must be modified to read:
EQUIVALENCE (F(1),PP(1)), (F(IMAX*JMAX + 1), U(1)),
(F(2*IMAX*JMAX + 1), V(1)), (F(3*IMAX*JMAX + 1),

W(1)), (F(4*IMAX*JMAX + 1), AKE(1)), (F(5*IMAX*JMAX + 1),
ADS(1)).
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Array

1. General

F

P, RHO, GAM, SU, SP, DU
DV, DW, AXP, AXM, AYDP,
AYM, AZ, GX, GY, G2

CY

A, B

CYU
DRHODP, PU, RHOD

PP, U, V, W, AKE, ADS
NFM

ZETA, X, XS, XDIF, XSU
YSR, ETA, Y, YS, YDIF, YSV
FXP, FXM

FYP, FYM

IM

ISOLVE

RELAX

NSWP

IPRINT

TITLE

ZRE

AMUT, CPMN

PRLAM, PR
FLUXN, FLUXS

FLUXW, FLUXE

Must be dimensioned

( IMAX* JMAX*NNV)

( IMAX*JMAX)

At least (LCV + 2)

~ At least the greater of

(LCV + 2) and (MCV + 2)

At least (LCV + 2)

( IMAX* JMAX)

( IMAX*JIMAX)

At
At
At
At
At
At
At
At
At
At
(6,
At

least
least
least
least
least
least
least
least
least

least

(NNV
(LCV
(MCV
(LCV
(MCV
(MCV
(NNV)
(NNV
(NNV)
(NNV

+ 7)
+ 2)
+ 2)
+ 2)
+ 2)
+ 2)

+ 3)

+ 7)

at least NNV + 7)

least

(no.

of printout

stations required)

At

least

( IMAX*JMAX)

At least (NNV)

At

At

least

least

(LCV
(MCV

+ 2,NNV)
+ 2,NNV)



8.5

" Array Must be dimensioned
GAMS, GAMN ' At least (LCV + 2)
GANE, GAMW : At least (MCV + 2)
2. Subroutine PRINT A
X1 At least (LCV + 2)
X2 At least (MCV + 2)

3. Subroutine AUX

DUIDXJ

GENR

(3,3

At least (LCV + 2, MCV + 2)

4, Subroutine ALLMOD

FINJ, FINJT At least LCV

Interpretation of Output

(a) Preliminary output

This is provided by the program before the marching
integration commences. It comprises the conditions at

inlet,

printed out as described below.

The variables printed are as follows:*

e the
e the
e the
& the
e the
e the
e the
e the

e the

x-direction velocity component (m/sec)
y-direction velocity component (m/sec)
z-direction velocity component (m/sec)
turbulent kinetic energy (mz/secz)

dissipation rate of turbulence energy (mz/secs)
stagnation enthalpy (Kcal/Kg)

hydrogen mass fraction in any form
thermodynamic temperature (OK)

static pressure_(N/mz)

*Note that the user is free to suppress printout of
any of these variables by use of the IPRINT array.
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e the density (Kg/m3)_

e the diffusion coefficient for F(Kg/m sec)

e the mass fraction of H2

e the mass fraction of 02

e +the mass fraction of OH

o the mass fraction of HZO

e the mass fraction of H

e the mass fraction of O

e the mass fraction of Nz

e the mass sources in the field

The printout is of the same format in each case. First is
printed the heading (i.e. TITLE (6,NV)) for the variable in
question. Then the complete two dimensional field is
printed, with I arranged horizontally, and J vertically.
Also shown are, at the far right hand side, the Y-direction
grid locations for each J, normalised by the height of

the domain, and below the array, the X-direction grid

locations for each I, in (m).

(b) Main OQutput

The output provided during the marching integration is
of four kinds, as follows:

(i) At every step, a single line of information
is printed out. Variables are provided, which. have

the following meanings:

ISTEP - step number

ENTRN - the entrainment in the Y-direction
through the North boundary

TOTM - the total mass flux in the axial
direction

TOTW - the total momentum flux in the axial
direction

TOTH - the total convective enthalpy flux



(ii)

(iii)

TOTN2 -~ the total convective flux of Nitrogen
TOTF -~ the total convective flux of Hydrogen

in any form '
FLOBOT -~ the jet mass flux through the South wail
FTOP -~ +the total Hydrogen in any fofm mass flux

at the North boundary
The headings provided for the above variables are:
ISTEP, E, M, MO, H, N2, F, B and BT respectively.

At every step another'singlé line of information
is printed out. Variables are provided which have
the following meanings:

ISTEP - step number
ZUu - axial location, Z2 (m) ’

Y(MP1) -~ the location of the north boundary
(useful in checking the axial variation
of the domain's height).

SUM - the sum of mass sources, indicating

the imbalances in the field.

The headings provided for the above variables are:
ISTEP, ZU, DEL and MASS IMBALANCE.

Every ICJUMP steps, axially directed wall shear
stresses are printed out; drag coefficients and
Stanton numbers are also printed out. What is
printed out is, for I from 2 to LCV + 1,

e AREAS, AREAN, AREAW and AREAE - the areas
(in mé) of the South, North, West and East
walls ad301n1ng the near—wall “control volumes
for the I in question

e TAUS, TAUN, TAUW and TAUE - the local wall shear
stresses at the South, North, West and East walls.

e CFS, CFN, CFW and CFE - the local wall shear
stresseq at the South, North, West and East
walls, divided by the mean dynamlc head (%pw )
at the station under consideration

e STANS, STANN, STANW,and STANE - the Stanton numbers
at the South, North, West and East walls

Apart from the above local quantities, are also
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printed out mean quantities as follows:

e WBAR - the mean value of w across each
plane of calculation

e DHEDTD - the mean dynamic head at each plane
of calculation
e CFSAV,
ggggx’ - the mean values of CFS, CFN CFW
, iy . .
CFEAV and CFE defined above, respectively.
e STASAV,
STANAV, - the mean values of STANS, STANN, STANW
STAWAV, and STANE defined above, respectively.
STAEAV

It is also in this context that the following
quantities are printed out for testing purposes:

e TFLOWT - the mass flow rate across each plane of
' calculation
e DHED - the total momentum across each plane

of calculation.

(iv) Every NPJUMP steps, and/or as specified via ZRE,
complete variable printout is provided as described
in Section 8.5 (a) above,



9.1

9.2

9.2-

RESULTS AND DISCUSSION

Introduction

Sample results for three typical cases of interest are presented

in this chapter. It should be noted that only the third case is

the novelty of this section which has, otherwise, been taken

from a previous report {6} of the HISS program. This case concerns
parallel hydrogen injection in a domain whose North boundary wall
expands with axial distance. The results for the other two cases
have been taken from {6} and have been obtained by using HISS rather
than SHIP. However, test runs for identical cases, using the latter
program proved that the results thus obtained are very similar to
the ones reported here.

Presentation of Typical Results

1 Introduction

Results for ten cases were calculated for the contract {6}
by the technique described in the first eight chapters.

For each case profiles of 19 variables described earlier
were computed for a grid of 12 grid lines transverse to the
flow and 20 grid lines normal to the flow for a total of
240 points at each station in the main flow direction.
Computations were made for several hundred stations. Thus,
the total number of variables computed approaches nearly
one-million for each case. In this section results for two
typical cases will be presented. These results consist

of hydrogen concentration, temperature and pressure
distributions at three axial locations and at two locations
transverse to the main flow direction.

.2-2 Definition of cases

One case for normal injection (Case 1) and two cases for
parallel injection (Cases 9 and 7) are described in this
chapter. The geometrical configuration of these cases
are shown in Figures 1, 2 and 3 respectively. Table 6
defines the flow and thermal properties. .
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TABLE 6:

DEFINITION OF PROPERTIES

Location Property (units) Case 1 Case 9 Case 7
Main Stream Flow speed (m/s) . 675 1585.2 1585.2
conditions o
Temperature ( K) 70.6 1178.6 - 1178.6
Mass fraction N2 . 7676 .487 0.487
Mass fraction 02 .2325 .263 0.263"
Mass fraction H20 0.0 .25 0.250
Pressure (N/m2) 8720.0 179300.0 179300.0
Jet Flow speed (m/s) 1210.0 2039.4 2039.4
conditions o
Temperature ( K) 250.0 150.3 150.3
Mass fraction H2 1.0 1.0 1.0
Pressure N/m2 212000.0 179300.0 179300.0
Mass flow Kg/sec .000165 .0109 0.0109
Boundary Ducted¥* Free Ductedx*

*Duct dimensions are ,0381 x .177 meters
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9.3 Graphs of Results

All data are presented for planes normal to the wall and
parallel with the main flow direction. One of these planes
is located in the transverse direction directly at the
hydrogen jet centerline and the other is located between
jets (see Figures 1 and 2). The comparison of profiles at
a given plane at various main flow stations indicates the
rate of movement of hydrogen in a direction normal to the
flow. ' .

Figures 13 throughld are for normal injection (Case 1).
Figure 13 shows the distribution of hydrogen in any form at
three axial locations (.118m, .216m and .246m). The first

-profile is before the injection point (.186m) and therefore

no hydrogen is present. At the .216m location, the
hydrogen concentration levels (less than .01) indicate that
substantial mixing is primarily in the y direction. (The
close spacing of the adjacent injectors limits x direction
mixing). Examination of the results at the .246m station
shows continuing movement of hydrogen upward with an
attendant smoothing of the profile, as would be expected.

The temperature profiles of Figure 14 indicate that after
injection and combustion that little transverse thermal
gradient exists. This is partly due to the fact that the
flame front is at the outer layer of the hydrogen zone
which tends to diffuse the temperature in the transverse
direction. Also it is seen that the reaction of hydrogen
moves the thermal boundary layer outward from the plate
with movement in the main flow direction.

The pressure distribution for Case 1 is shown in Figure 15
It exhibits the qualitative behaviour one would expect.
There is little transverse pressure difference due to low
velocities in that direction. A pressure spike can be
seen downstream of the jet indicating a shock. The
pressure below the shock is essentially uniform at a
higher value than the free stream. It must be emphasized
that the pressure distribution in the jet region is subject
to error due to the fact that the flow was forced to be
parabolic when in actuality there is some upstream effect
caused by the jet.

Figures 16 through 18 are results for Case 9 which is
parallel injection. -The diameter of the jets and jet
spacing are much larger than for Case 1. The profiles at
injection (2=0) show that there is little mixing of
hydrogen between jets. However, as the flow moves forward
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the mixing increases such that the concentration of hydrogen
between jets is roughly 50% of the hydrogen concentration in
line with the jet at 2=.36 meter. However, these figures
show that in the normal direction the movement of hydrogen
upward between jets is not very effective. This is due to
the low normal velocities for the parallel injection case.
The temperature distribution in Figure 17 indicates a higher
temperature between jets even though the hydrogen
concentration is lower. This is because the combustion
occurs at the fringe of the hydrogen zone. The combustion:
zone upper surface is indicated by the 'spikes' in the

. temperature profile. This combustion is seen to grow with

movement downstream. The pressurée distribution shown in
Figure 18 does not indicate any shocks. At the injection
station (2=0), the flow expands in the low density region.
However, at downstream locations the pressure becomes
uniform at approximately the free stream value.

-Parallel injection into a duct with expanding top wall

This is the case chosen to demonstrate the validity of the
SHIP program.

Profiles of 19 variables described earlier were computed for
a grid of 12 grid lines transverse to the flow and 12 grid
lines normal to the flow for a total of 144 points at each
station in the main flow direction. Computations were made
up to 2=0,50m (see Figure 3) for 150 stations. In this
section the results thus achieved will be presented. They
consist again of hydrogen concentration, temperature and
pressure distribution at four axial locations and at two
locations transverse to the main flow direction. (Figures 19,
20 and 21.).

The concentration profiles at injection (z=0) (Figure 19)
show again that there is little mixing of hydrogen between
jets. Downstream the same arguments as for Case 9 above
still hold true. The temperature distribution in Figure 20.
indicates again a higher temperature between jets even though
the hydrogen concentration is lower. The pressure distribution
(Figure 21) does not indicate any shocks. At the injection
station (z=0), the flow expands in the low density region.

At downstream locations the pressure becomes uniform at
approximately the free stream value up to the point where
expansion of the domain starts. Downstream that point the
pressure is again uniform, but at lower values as we proceed

further downstream.
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" CONCLUSIONS AND RECOMMENDATIONS

Qualitatively the results obtained by the method developed
herein appear to be correct. Further, comparison with cold
flow data also show excellent agreement. The computational
time for these results is also very good.

The assumption of parabolic flow in the injection region
needs improvement because both data and calculations made
in this work indicate that the pressure distribution is
affected upstream by the jet. Recirculation, however, is
probably not important. What is needed is a technique

to allow the pressure to be calculated via an ellintic
procedure and the velocity by a parabolic one. Such a
technique is advantageous over fully elliptic procedure
because storage and computation time are much lower.

The SHIP code has considerable potential for further
development and exploitation. The suggestions made here
are by no means exhaustive, but are merely intended to
be pointers. Two distinct (but related) possibilities
exist.

Firstly, the code can be extended to handle other, more
complicated situations by suitable modifications.

Secondly, it can be varied to produce new codes capable

of solving new problems. At the present time the

following suggestions seem worth recording. More
improvements may be introduced into the SHIP code to increase
its efficiency. As a matter of fact a number of latest
advances are now available and may be transferred to the SHIP
code, They include major reprogramming for improving the
numerical algorithm (e.g. use of a different differencing
scheme) and making the code more readily understandable.

A disadvantage of the present version of the code is that
both velocities and pressures are stored at the same axial
position (i.e. they are not staggered in the predominant
flow direction). Staggering the velocity locations even

in that direction and using different density interpolation
formulae, will have several advantages; apart from others
this practice has also the distinct merit that it blends
smoothly with the elliptic and partially-parabolic ones.
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APPENDIX A

The Chemical Equilibrium Model

The main features of the equilibrium chemistry model used
to predict the properties in a hydrogen - air flame are
described below,

Four equilibrium reactions are assumed as follows:

1
!
H+H ¥ H (A-1)
K. 2
2
oO+0 % 0, (A-2)
t
k3 R
H +OHZ H,O0 (A-3)
]
k4
O+H < OH (A-4)
The six species involved in these reactions are considered
to be present with nitrogen which is inert. 1In developing

the equations to predict the equilibrium concentration of
the species, two quantities are defined, namely:

W.O WO (A-5)
F=m + m, + m + w— m =
0y M0 T Wy G M0 ¥ Woy oH _
Vi, W :
f=mg, +m +zg— m + g m A-6)
H2 H ano H20 WOH OH

where F is the total mass fraction of oxygen in any form
and f is the total mass fraction of hydrogen in any form.
Since the molecular weight of the various oxygen species
is approximately equal to that of nitrogen, it is assumed
that the coefficient of turbulent diffusion of the chemical
species are equal to each other at every point in the flow.
A well known consequence is that f is linearly related to
My and the constants in the relation can be determined

o -
from the boundary tonditions:



m m

_ N2 . O2 1t

my my - (A-T7)
2,air 2,air

The total mass fraction of all elementa ies st
il ty wRiches vesA ntal species must be

Fam +1f=1 (A-8)
2
Also,
F=gq (1 - 1) (A-9)
with q = me = 0.232
2,air

Therefore, if f is known, F can be determined by equation (A-9).

From thermodynamic considerations the equilibrium constant
Kp, for the reaction:

K
p
aA + bB 2 cC is defined by,

XC —a-
Ko = ——gf—g——°pc a-b (A-10)
XA XB .

where x stands for concentration and the pressure p is in
atmospheres. For each of the four reactions(A-1) to (A-4) in
the present model c-a~b = -1, Expressing the concentrations
in terms of mass fractions by noting that,

m. = ¥
i T W *i (A-11)

where W is the molecular weight of the mixture we get:

[¢] G
K; = Kp¥ awa = 'ame (A-12)
L m, My

Thus the equilibrium equations for the reactions (A-1) to
(A-4) can be written:

' m

. "y
K, = 2 (A-13)
2

1 —

m
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=]
C

_ - Vs
K, = —= _ (A-14)
m
0
. .mHZO
K, = : :
_ A-15
3 myMoe (A-15)
K, = ) ' (A-16
4 MMy (A~ )

The condition of equilibrium is expressed using four
equilibrium constants for the four chemical reactions. If
thermodynamic equilibrium prevails, the K's take values
which depend upon temperature alone. In the above set of

equations there are seven unknowns (mHz, moz, mH, Mg mOH’

mHZO and F; f being given) and seven equations (A-5, A-6, A-8,
A-13, A-14, A-15, A-16). The problem is therefore soluble.

The remaining discussion defines the solution procedure.

" Derivation of Solution Procedure

The present procedure is based on the reduction of the
number of variables under consideration. Two equations
are derived as follows:

Equations (A-13 - A-16) are solved to give the relationships:

-
= /i (A-17)
My Vo . ‘ |
: |
my = R Vg (A-18)
Yk, 2
2



LK . _
3 m S . (A-19)
2 vy Hg 0y ‘
Ky "Ky |
K' .'- .
. " (A-20
Moy = -4 /mH2 /moz . ( )
/'_l_—'—l .
K; Ky

(A-21)
1

. . (A-22)
Ko

(A-23)

(A-24)

*ThHese depend upon temperature alone: therefore, they can
be tabulated right at the start.
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Using equations (A-17 to A-20) to eliminate my mHZO’ My and

mOH from equations (A-6) and (A-6) gives:

v g @Bsfem +38 5 (A-25)

F = m -
0y Oq 2 7 2

£ o= m (1+§<‘:/@;2—) W T XA v o D/ T(A-26)
’ 2

Where the definitions given by equations (A-21 to A-24) have been

used.

These equations have the form of a quadratic equation:

(A-27)

Note that a and b are always positive and ¢ is always
negative. Since u > 0, the physically meaningful root is

the one with the positive sign. This particular form of
quadratic expression is chosen since it does not require
subtraction and gives greater precision. Using equation
(A-27) to express the solution of equatlons (A-25) and (A-26)

gives:

m ' ' F L . , .
O, = R i NN
2 B+3om + 16 b vm B+ 2¢C + _Q D /
[ 9 il 17 ~ "My ] [ 9 - My 17 ‘%{J
2 2 2
" + F
2 2
(A-28)



. £

2 R BN - BT
F . D .m02 [A-f i ﬁ./ﬁbz
- |

+ (1 + % CVmoz)f (A-29)

Equations (A-28)and(A-29)contain the unknowns m, and my .

Before detailing the solution procedure several propert%es of
these equatlons Wlll be dlscussed Table A-1 gives the values
of Ky, K. K K,, A, B, C and D for the temperatures from
100 %o 6 OOK at a constant P¥ product of 2.5 (corresponding
approximately to 1/10 atmosphere). Note that while the
individual constantsvary from less- than 1 to 10 O, the
groups appearing in equations(A-28)and(A-29)vary much less
and can be easily processed on a digital computer. Second

it is to be observed that the equations have been derived

so that a 'physical' relationship has been established

between Mo and F, and m, and £, i.e. as F » 0, my > 0,

and as f +2O, my > 0. I% should also be observed %hat my
and my can neve% be less than zero or greater than 1. 2
Finall%, neither equation becomes indefinite as my, Oor mg

2

approach zero. Thus, the equations. are well—behav%d and
can be readily solved for wide variations in temperature
and pressure. The solution procedure is described next. A
value of My is guessed in the following way. If the value

at the equi%alent upstream station is known, then that value
is used; otherwise, a value of zero will alwayvs lead to
a converged solution. This assumed value of My is substituted

into equation (A-28)which yields my . Then the %omputed

value of moz is substituted into eauation(A-ZQ)which allows
calculation"of a new value of my . The assumed and calculated
values of my .are compared, If ghese values differ by more

than a spe01%1ed convergence criterion, the calculated value
of My is taken as the assumed value and the process described

abovezis repeated until convergence is obtained. The
behaviour of this solution technique is shown in Figure A-1.

This figure shows with the broken line a plot of my
2
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calculated versus mH2 assumed. . The correct value is achieved
when the two values are equal. The locus of points for this
situation is a straight line with a slope of unity. If
my assumed is less than the correct value, the figure shows

2 ' '
that the calculated value will always be larger. Thus,
when this calculated value of My is taken as the assumed

2

value, the resulting newly calculated value will be closer
to the correct one. The same argument can be made to
show that if the initial assumed value of My, is too large,

2
the iteration process will again cause convergence to the
correct one. Great precision can be obtained with this

method. The convergence criterion for the calculation is:

lmH calculated - my ~assumed| ¢ 0.001 my calculated
2 2 2

Greater precision can be easily achieved b§ a stricter
convergence criterion. However, the present one is
sufficient for most practical cglculations.

It may be concluded that the method offers a reliable,
simple and -extremely fast technique for solving the
equilibrium equations arising from the chemical model
considered in this work,
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TABLE A-1. NUMERICAL VALUES OF EQUILIBRIUM CONSTANTS

. _ - - _
Temp Ki Ké X é X, a B c D

200 5.0+100 3.1E+99 2.6+100 2.6+100 4.4E-51 1.7E-50 2.42E+50 71.95E+00
400 2.8E+52 2.7E+58 3,2E+51 6.2E+59 5.9E-27 6.0E-30 4.30E+29 2,19E+04
600 2.3E+33 4.,3E+36 5.8E+32 9.0E+37 2.OE717 4.7E-19 1.09E+19 B8.46F+02
800 5.9E+23 4.9E+25 2,2E+23 9.3E+26 1.2F-12 1.4E-13 4,95E+13 1.56E+02
1000 9.7E+17 1.2E+19 4.5E+17 2,2E+20 1.0E-09 2.7E-10 2.94E+10 5.94E+01
1200 1.2E+14 5.0E+14 7.0E+13 8,2E+15 8.7E-08 4.4E-08 2.14E+08 3.14E+01
1400 2.1E+11 3.5B+11 1.2E+11 5.4E+12 2.1E-06 1.6E-06 G5.22E+06 1.81E+01
1600 1.78+09 1.1E+09 1,1E+09 2.2E+10 2.4E-05 2.5E-05 3.67E+05 1.32E+01
1800 3.9E+07 2.1E+07 2,7E4+07 3.0E+08 1.5E-04 2,1E-04 4.53E+04 9.45E+00
2000 1.9E+06 7.0E+05 1.4E+06 9.8E+06 7.2E-04 1.1E-03 8.63E+03 7.76E+00
2200 1.5E+05 4.3E+04 1.2E+05 5.8E+05 2.5E-03 4.8E-03 2.24E+03 6.96E+00
2400 1.9E+04 - 4.2E+03 1.6E+04 5.5E+04 7.0E-03 1.5E-02 0.71E+03 5.77E+00
2600 3.4E+03 5.8E+02 2.8E+03 7.6E+03 1.7E-02 4.1E-02 2.60E+12 5.30E+00
2800 7.5E+02 1.0E+02 6.4E+02 1.3E+03 3,6E-02 9.6E-02 1,11E+02 4.49E+00
3000 2.0E+02 2.4E+01 1.74+02 3.1E+02 7.0E-02 2.0E-01 ©5.37E+01 4.34E+00
3200 6.3E+01 6.8E+00 5.7E+01 8.5E+01 1.2E-01 3.8E-01 2.95E+01 3.87E+00
3400 2.3E+01 2.1E+00 2.1E+01 2.7E+01 2,0E-01 6.7E-01 1,70E+01 3.62E+00
3600 _9.3E+01 7.9E-01 8.6E+00 9.8E+00 3.2E-01 1.1E+00 1.02E+01 3.45E+00
3800 4.1E+00 3.2E-01 3.8E+00 3.9E+00 4.9E-01 1.7E+00 6.38E+00 3.25E+00
4000 1.9E+00 1.4E-01 1.8E+00 1.7E+00 7.0E-01 2.6E+00 4.30E+00 3.09E+00
4200 1,0E4+00 6.8E-02 9.8E-01 8.3E-01 9.8E-01 3.8E+00 3,12E+00 3.09E+00
4400 5.5E-01 3.5E-02 5.4E-01 4.2E-01 1.3E+00 5.3E+00 2,20E+00 2.89E+00
4600 3.2E-01 1.8E-02 3.1E-01 2.2E-01 1.7E+00 7.2E+00 1.59E+00 2.69E+00
4800 1.9E-01 1.0E-02 1.,9E-01 1.3E-01 2.2E+00 9.6E+00 1.30E+00 2.74E+00
5000 1.2E-01 6.4E-03 1,2BE-01 7.7E-02 2.8E+00 1.2E+01 9.62E-01 2,59E+00
5200 7.9E-02 4.0E-03 7.8E~02 4.8E-02 3,5E+01 1.5E+01 7.49E-01 2,52E+00
5400 5.3E-02 2,5E-03 5.3E-02 3.1E-02 4.3E+00 1.9E+01 6.20E-01 2.53E+00
5600 3.6E-02 1.7E-03 3.6BE-02 2,0E-02 5,.2E+00 2,4E+01 4.85E-01 2.49E+00
5800 2.6E-02 1.1E-03 2.6E-02 1.4E-02 6.1E+00 2,9E+01 4.22E-01 2.47E+00
6000 1.8E-02 8.1E-04 1.8E-02 9.8E-03 7.2E+00 3.5E+01 3.44E-01 2.47E+00
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APPENDIX B

- Free-Stream Boundary Conditions in

Supersonic Flows

(a) Consider the effect of a pressure wave of angle 8 on
a stream of velocity we (supposing that v, = 0 and
u_=0). :

o0

Weo

Y,V

The v-momentum equation for the domain ABCD (where
AB and CD are stream surfaces) is:

W p_ (Y, -V) = (p,-p) / tanB | (B-1)
tan B = (W =W )/(vy=-V)

- The wave angle can be related to the Mach number by:

tang = 14 M2 - 1 | (B-2)

so that:

v = Moo -1 . (B-s)
P w ’
(-] (-]

(b) The energy equation for a perfect gas gives:

2 2

'liQJ, v Pp o e +"'Yp'°° ' (B-4)
2 (Y=-1)0 3 -1y o

b
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Py

where Uy denotes the requltant ve10c1ty at the

boundary, For an 1sentropic flow,

.p;
of ol
P 1/Y
b
whence: Py 2 ( ——) P
so that:
i R (39)“'1/” P
N 1/y Poo
(P /P Py

Substitution of (B-7) into (B-4) gives:

: -1
.-V/Z v P oy Ty
u =Vw: 42 - 1= GG T

H

’

(B=5)

(B-6)

(B-7)

(B-8)

(B-9)



" APPENDIX C

List.of FORTRAN Variables
" Notes

1. " Star rating

This list classifies variables -as having general
importance or being merely of local significance.
The latter variety is marked with a dash (-). 1In
the former variety, each variable is given a star
rating of one (*), two (**) or three (***) stars.
This indicates that the variable is appropriate to
the problem-dependent (*), physical-modelling (**),
or the main-machinery (***) part of the program.

2. Subscripted variables

Subscripts to variables are shown only when necessary,
in order to explain the meaning of the variable. 1In
general therefore, the subscript status of each
variable should be understood from the column headed
NATURE.

3. Symbols

Wherever possible, the symbols corresponding to
FORTRAN variables, which are used in the text, are
" also listed. .
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NO.| VARIABLE NATURE ~ STAR SYMBOL MEANING
: RATING
1 |A(I) REAL,ARRAY ok K Transformed coefficient
a in TDMA operation
2 | ADIN REAL, * Dissipation rate at inletj
3 | ADS(1J) REAL,ARRAY * %k ok £ Dissipation rate
4 | AGEOM REAL, * - Factor in grid expansion
S |AK REAL, * % K . Mixing-length constant
6 | AKE(IJ) REAL, ARRAY * 0k k k Turbulence energy
7 | AKFAC REAL, - Factor relating k to
mean motion energy
8 [ AKIN REAL, * Inlet kinetic energy
9 {ALX,ALXM, | REAL, - £ Quantities representing.
ALXP,ALY Le the convective )
ALYM, ALYP ’ coefficients in the
ALZ ALZ1 LQ ‘ote | Tinite-difference
equations
10 | AMUREF REAL, * Reference laminar
. viscosity
11 | AMUT(IJ) REAL, ARRAY * ok by Turbulent viscosity
12 | ARAT REAL, * Ratio of upstream to
downstream areas
13 | AREA REAL, - Area of control-volume
face
14 | AXM, AXP, REAL, ARRAY ok Ay,Ap,| Coefficient of finite-
AYM, AYP, A A difference equations
AZ S’"N,
C
LP,U
15 |B REAL,ARRAY * koK Transformed
coefficient in TDMA
operation
16 | BXE REAL, *k AEE Width of integration
plane in the £-direction
17 | BXEU REAL, * Upstream value of BXE
18 |BYN REAL, Ak AﬁN Width of integration
: plane in the n- '
! direction
19 |BYNU REAL, * Upstream value of BYN
20 (cp’ REAL, *k o Constant in turbulence
model '
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NO}- VARIABLE NATURE STAR SYMBOL MEANING
' RATING
21| CDQR,CDRT | REAL, o cpt.c ¥ roots of cp
CDTQ c 3
. D
22 | CP REAL, * Cp. Specific heat
*

23 | CPDCV. REAL Co/Cy  |specific heat at
constant pressure
divided by specific
heat at constant
volume

24 | CX,CXP, REAL, CY only| - Temporary storage for

CY,CYP, as ARRAY finite-difference
CZ,CZp coefficients

25 |. C1,C2 REAL, * Constants in
‘turbulence model

26 | CFS etc REAL, * Local shear stress
at South wall

27 | CFSAV,etc | REAL, * L.ocal normalised
shear stress at South
wall

28 | DBXEDZ, REAL, %% iL(AEE), Rates of growths of

DBYNDZ dz BXE, BYN with respect
d
lL(AnN) to dz
dz
{29 |DEN - REAL, % % o] Reference density of
fluid
30 |DHED REAL, * Dynamic Head
31 |DHEDIN REAL, * Value of DHED at inlet
32 {DPDZ REAL, Aok ok " 9p Pressure-gradient in
. 2z the g-direction
33 |DPDZU REAL, * Upstream value of
DPDZ
34 |DU,DV,DW REAL, ARRAY * kK % DU,DY, Pressure-difference
DW coefficients for the
. U,V & W velocities
35 [DXWDZ, REAL * % Slopes of W & S
DYSDZ boundaries
36 IDZ REAL, - * % % AL Forward step-size
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MEANING

NO VARIABLE NATURE -STAR | SYMBOL
RATING _
37 | pZU REAL, * Upstream value of DZ
38 EE REAL, * E Constant in the law-
: of-the-wall
39 ETA REAL, ARRAY * ok ok n Non-dimensional ¥
coordinate
40 | EX REAL, * Factor by which
forward step size is
incremented
41 F REAL, ARRAY *okok ¢ Store for dependent-
variable values
42 FLOWIN REAL, * Rate of mass inflow
into the calculation
domain _
43 FLOINJ REAL, ARRAY * Mass flow rate
FLOINT injected by a jet
through the south and
north wall respectively
44 FLUXE, REAL, ARRAY * Fluxes of dependent
FLUXW, variables on E,W,N,S
FLUXN, boundaries
FLUXS
45 FRA, REAL, - Fraction of boundary-
FRAM layer width used in
calculating forward
step size, FRAM is the
maximum value of FRA
46 FXM,FXP, |REAL,ARRAY * koK Interpolation factors
FYM, FYP to indicate distance
of a pressure node
from the neighbouring-
velocity locations
47 GAM REAL,ARRAY *Hkx T¢ Store for diffusion
coefficients
48 | GAMA REAL, - Local value of GAM at
locations where it is
not stored
49 GAME, REAL, ARRAY * F¢ wall Boundary values of GAM
GAMW, ' to compute corresponding
GAMS, FLUX's
GAMN
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'STAR

' SYMBOL

NO VARIABLE | NATURE : “MEANING

' : : RATING] . ...} . . -

50 GASCON REAL, * _Un1VPrsa1 gas constant_

'51 | GREAT REAL, - Large number, used to
fix values to desired
levels and in llmltlng
overflows; 103 :

52 GX,GY REAL, ARRAY * K Mass velocities in the

GZ £» mn-.and g-directions

53 HO ' |[REAL, ARRAY * g Enthalpy of formation

54 | I INTEGER, * ok | Index indicating
position in the

_ E-direction

55 ICJUMP INTEGER, * Index, controlling
calculation of wall
fluxes for purposes
of printout only

56 IINJ, INTEGER, * Indices to control

IINJT : entry to INJMOD and

INJMOT, reSpectively

57 I1J,IJE Computed subscripts
IJN,IJNW, to replace (I,bJd), (I+1 J)

I1JS,IJSE, (I,J3+1),(I-1 J+1) (I~

IJW J)_(I+1 J=-1),(1-1,J)

58 IJREF INTEGER, *k %k Location of grid node
that is used as the
reference for relatlve
pressure

59 IJT INTEGER, ** Calculable subscript
for T (=IJ+NFM(NVT))

60 IMAX INTEGER, * Ak Maximum value of I,
for which storage
locations are prov1ded
in the: program L

61 | INJSTR, |INTEGER, * Value of ISTEP.at- o

INJTOP ' injection location,,
for South. and North,
wall, respectively

62 | IPRINT |[INTEGER,ARRAY| *** Values of a variable NV,

(NV) printed only if the

corresponding IPRINT
is unity

14
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NO

VARIABLE

NATURE

STAR

RATING

SYMBOL

MEANING

63

64

65

66

67

68

69

70

71
72

73

ISOLVE
(NV)

ISTEP

ISTR

Iswp

IXY

IM(J)

JMAX

JSMAX
JSTR-

JSWP

INTEGER, ARRAY

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTEGER, ARRAY

INTEGER,

INTEGER,
INTEGER,

INTEGER,

N K

¥ ek

* 0 %

¥ %k K

% % %k

* % %k

% % %

4 ok X%

% ¥ Xk

Aok ok

Index denoting whether
the finite~difference
equations of variable
NV are solved -
(ISOLVE(NV) = 1) or not
(ISOLVE(NV) = 0)

Counter for forward
steps

Value of I for the
first internal storage
location for a given
variable

Index denoting the
direction of sweep
while performing the
TDMA traverse in the
E-direction

Integer denoting

"whether the

E~direction or the
n-direction TDMA
traverse is performed
first

Index denoting the
position in the
n-direction

(J-1)*IMAX ; used for
subscript calculation

Maximum value of J,
for which storage
locations are
provided

Jd~location of SMAX

Value of J denoting
the first internal
location for a given
variable :

Index denoting the
direction of sweep
while performing the
THDMA traverse in the
n=direction
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NO

VARIABLE

NATURE

t STAR

RATING

- SYMBOL

MEANING

74

75

76

77

78

80

81

82

83

84

85

86

87

KBCE,
KBCW,

KBCN,

KBCS

LASTEP

LCv

LP1

MCV

MP1

NFM(NV)

NFPMAX

NITERF

NITERM

NMU

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTEGER,

INTERGER , ARRAY

INTEGER,

INTEGER,

INTEGER,

INTEGER,

¥ K kK

¥ %k %k

dodok

* %k %

¢ 2 s

* %k X

A K %k

6K K

ok

%* %

% %k

Indices, denoting the
nature of the E,W,N
and S boundarles,

= 1 for wall
boundaries; = 2 for
symmetry planes; = 3
for 'free' boundaries

Number of grid lines
minus one in the
r-direction;

The LAST STEP i.e,
the maximum number
that ISTEP can attain

The number of main
control volumes in the
E~-direction

Number of grid points
in the E-direction

Number of grid lines

minus one in the
n~-direction

Number of control
volumes in the
n-direction

Number of grid points
in the n-direction

(NV=-1)*IMAX*JMAX; used
for subscript
calculation

Maximum number of
variables F, for which
arrangement for

"Printout is available

Number of iterations
on variables ¢ (i.e.
F) other than
velocities

Number of iterations
on velocity components

Index identifying GAM,
the effective diffusion
coefficient
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NO VARIABLE NATURE STAR SYMBOL MEANING
- RATING
88 NNV INTEGER, * %k Number of variables
for which storage in
the F array is provided
89 NH INTEGER, *okok Identifier of atomic |
_ hydrogen concentration
90 | NH2 J{INTEGER, ok Identifier of molecular
hydrogen concentration
91 NH20 INTEGER, * k¥ Identifier of water
: vapor concentration
92 NN2 INTEGER, * k¥ Identifier of molecular
nitrogen concentration
93 NO INTEGER, * k% Identifier of atomic
oxygen concentration
94 NOH INTEGER, * Kk Identifier of OH
concentration
95 NO2 INTEGER, *k K Identifier of
molecular oxygen
concentration
96 NPJUMP |INTEGER, * Intervals of ISTEP
: after which a
printout of main
variables is obtained
97 | NPP INTEGER, ok Index identifying p
, in the F-array
98 | NRHO INTEGER, ok Index identifying p
- (density)
99 NSWP INTEGER, ARRAY| *** Number of pairs of
(NV) TDMA sweeps for
variable (NV)
100 NV *kx Serial number of any

INTEGER,

112
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©Nd

NO VARIABLE NATURE ~ STAR SYMBOL MEANING
' ' : RATING .
‘| 101 | NVF,NVD | INTEGER, sk Identifiers for hydrogen
NVK,NVH | : concentration,(in any
form) ,dissipation rate
€, turbulence energy
k, and enthalpy
. h, in F
102 | NVP,NVT,| INTEGER | kK Identifiers for pressure
NVU,NVV, . p, temperature T, and
NVW velocity components u,
v and w, respectively
103 p REAL, ARRAY * %ok P Static pressure p
104 p1 REAL, ™ Constant
105 | PIN REAL, Inlet value of p
106 | PJAY REAL, P Resistance of laminar
. ¢ ~sublayer
107 | pp REAL, ARRAY *kok p' Pressure correction
108 | PR(NV) REAL, ARRAY * ¥k o, Effective Prandtl/
: ' ¢ Schmidt number
109 | PREF REAL, * ok Pressure at ‘reference
. grid node
110} PRLAM REAL,ARRAY * ok ok o Laminar Prandtl/Schmidt
(NV) ¢ number
111'| RELAX REAL, ARRAY >k ok £9 Relaxation factor for
(NV) : NV
112} RETRAN | REAL, * Transition
Reynolds number
113} RHO(IJ) | REAL, ARRAY *okok o Density
114 | ROAR REAL, * Density and control .
; volume face area
. product
115| SMALL REAL, - Small number used to
: trap the possibility
of divisions by zero;
10-30 used

.a
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NO VARIABLE NATURE STAR SYMBOL MEANING
RATING :
116 | SP REAL, ARRAY Ak ¥ SP One part of the
: linearised source
term
117 | STANS REAL * Local Stanton numbers
etc “at South wall, etc,
118 STANSM REAL * Mean Stanton
etc number at South wall, etc
119| SU REAL, ARRAY * koK SU A part of the
linearised source
term
120| TIN REAL, * Inlet value of
_ Temperature T
121| TITLE REAL , ARRAY * ok Kk Array storing
(NV) - 36-character alpha-
numeric names of
members of F
122| TINJ, REAL K Inlét jet temperature
TINJT at South and North
walls respectively
123| TWAL REAL, * Temperatyre of wall
boundaries-
124| TX,TY REAL, - T§Tn Temporary store for
the diffusive coefficients
125 U(IJd) REAL, ARRAY * ok k u Velocity component in
' the &-direction
126| UIN REAL, *. Inlet value of u
127 V(1J) REAL, ARRAY * %k v Velocity component
in the n-direction
128 VIN REAL, Inlet value of v
129} VINJ, REAL, * Velocity of jet
VINJT injection at South
and North walls,
respectively
130 VOL REAL, - Volume of control
volume, surrounding
a grid node
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NO | VARIABLE| NATURE STAR | SYMBOL MEANING
__RATING
131 | W(IJ) REAL ,ARRAY Aok K w Velocity components
: : in the Z-direction

132 | wBAR REAL, * Mean value of W across
each plane of '
calculation

133 | WIN REAL, * " Inlet value of w

134 | WM REAL , ARRAY * 0k Molecular weight

135 } ZD hEAL, * Ak Downstream value of ¢
at which calculations
are currently being
performed

136 | ZLAST REAL, * Last value of z at .
which calculations are
to be performed

137 | ZU REAL, ok K Upstream value of ¢

138 } ZETA REAL , ARRAY s’ He £ Non-dimensional x
coordinate

139 | ZINJ, REAL, * Z-location of

ZINJT injection at South

and North walls,
respectively

140 | ZRE REAL ,ARRAY * Values of z for which

printout is desired
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APPENDIX D

Listing of SHIP

The subroutines and the1r entry p01nts are listed in the
following order.

1. BLOCK
2. MAIN
3. ALLMOD

BEGIN
GAMOD
GEOMOD
UPSTRM
SOMOD
INJMOD
INJMOT

4. AUX

DENSTY
GAMMA

SOURCE
VISCOS
SPECIE

.5. PRINT

6. SOLVE

7. STRIDA

e STRIDO
STRID1
e STRID2

8. STRIDB

e STRID3
STRID4
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